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ABSTRACT 

PHOSPHORUS RECYCLING BY PROFUNDA QUAGGA MUSSELS IN LAKE 

MICHIGAN 

by 

Caroline Mosley 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Harvey Bootsma 

 

Quagga mussels (Dreissena rostiformis bugensis) act as ecosystem engineers in the 

southern basin of Lake Michigan, altering physical habitats and biogeochemical 

processes. Adapted to cold and oligotrophic conditions, profunda quagga mussels thrive 

on the soft substrate of deeper depths. At a 55 m site (10,000 mussels m
-2

) offshore from 

Milwaukee, WI, profunda mussel biomass (g m
-2

) was 1/3 of biomass (g m
-2

) measured at 

a 10 m comparison site (5,000 mussels m
-2

). Higher densities but less biomass is due to 

profunda mussels having less tissue for a given length and the population per m
2
 

comprising of mostly small mussels (< 8 mm). Cold temperatures (≤ 6 ºC) and 

oligotrophy in the hypolimion (≤ 0.10 µmol P L
-1

) limit profunda quagga mussel grazing, 

excretion, and egestion. Profunda mussels ≥ 8 mm excrete at similar rates (0.004 to 0.010 

µmol SRP mgDW
-1

 d
-1

) that are nearly a magnitude lower than the nearshore phenotype. 

Past studies have focused on mussel excretion, but these experiments suggest the 

excretion : egestion ratio is 3 : 2, and mussel biodeposits could a critical factor in the 

amount of P sequestered by mussels. Mussel effective clearance rates (0.19 to 3.65 L 

mgDW
-1

 d
-1

) increased with decreasing mussel dry tissue weight and were dependent on 
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particulate P concentrations above the mussel bed. In one year, nutrient cycling by 

profunda quagga mussels is 100 times greater than nutrients tied up in biomass, 

highlighting how the filter feeders increase the cycling rate. 

 Internal recycling is a critical component of Lake Michigan’s P cycle. In the pre-

dreissenid period, P was utilized in the hypolimnion by phytoplankton, settled passively 

to the lake bottom, and largely returned to the system via resuspension. Profunda quagga 

mussel grazing has altered P fluxes by reducing sediment resuspension and increasing 

nutrient cycling in the benthos. Mussel grazing rates are higher than passive settling rates 

due to vertical mixing replenishing the food supply above mussel beds. Dreissenids act as 

both nutrient recyclers and sinks, but in the deeper depths of Lake Michigan, profunda 

quagga mussels filtering year-round appear to have altered P residence time in the 

benthos. 
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“When we try to pick out anything by itself, we find it hitched to everything else in 

the universe.” 
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1. Introduction 

Understanding nutrient cycling in an aquatic system is critical in interpreting energy flow 

and food web dynamics. Phosphorous (P) is the limiting nutrient in many temperate 

freshwater systems and a major component in biological metabolism, with around 90 % 

occurring as organic phosphates, cellular constituents, and P adhered to detrital matter 

(Wetzel, 2001). P concentrations in aquatic systems rely on both abiotic (water chemistry 

and climate) and biotic (aquatic organisms) factors. The composition of aquatic food 

webs affects the distribution of P in a system as well as the partitioning of P between 

various pools (particulate versus dissolved). Large populations of benthic filter feeders, 

such as oysters, clams, and mussels, can alter P cycling by efficiently filtering nutrients 

out of the water column. Linking pelagic and benthic systems, suspension feeders affect 

energy distribution (Ackerman et al., 2001; Higgins and Vander Zanden, 2010; Kautsky 

and Evans, 1987; Newell et al., 2005; Padilla et al., 1996). They exert bottom-up forces 

on aquatic systems by altering the cycling, stoichiometry, and spatial distribution of 

nutrients (Arnott and Vanni, 1996; Mellina et al., 1995; Naddafi et al., 2009; 

Stanczykowska and Lewandowski, 1993). At the same time, constant grazing can have a 

top-down influence, affecting phytoplankton abundance and species composition (Cloern, 

1982; Fahnenstiel et al., 2010; Newell, 1988; Vanderploeg et al., 2010). Large 

populations can act as ecosystem engineers by changing the physical environment and 

increasing the retention of nutrients in the benthos (Hecky et al., 2004). For example, 

mussels retain P by excreting at elevated C : P and N : P ratios (Naddafi and Pettersson, 

2008), and this sequestration of P in biomass or egested material could constitute a 

substantial loss of nutrients from a system (Cha et al., 2011; Chapra and Dolan, 2012; 
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Johengen et al., 1995). Filter feeders are both nutrient recyclers and sinks, and depending 

on the productivity of an aquatic system, the sequestration of nutrients is either favorable 

or detrimental to nutrient cycling. 

In eutrophic systems, filter feeders are necessary to keep water quality at a 

tolerable level for other organisms, and their absence can lead to poor water quality, 

enhanced phytoplankton blooms, and oxygen depletion due to microbial decomposition  

(Johannessen and Dahl, 1996; Rosenberg, 1985). Poor water quality in the Chesapeake 

Bay is due to increased anthropogenic N and P loading as well as anoxic conditions, 

exacerbated by the decline of the native eastern oyster Crassostrea virginica (Kemp et 

al., 2005). Where eastern oyster populations in the early 19
th

 century could filter almost 

80 % of the shallow bay, reduced populations now filter less than 1 % (Newell, 1988). 

The Chesapeake Bay is an example of the disappearance of a vital benthic filter feeder 

population where a high filtering capacity is needed to control eutrophication. Lake 

Michigan in the Laurentian Great Lakes region exemplifies the other end of the spectrum, 

where invasive dreissenid mussels dominate and stress an oligotrophic environment.  

The recent invasion of prolific Dreissena mussels in North America has caused 

long-term implications to trophic state as the invasive filter feeders reengineer nutrient 

cycling in the Great Lakes region (Hecky et al., 2004; Johengen et al., 2014; Mida et al., 

2010; Vanderploeg et al., 2010, 2002). Widespread throughout Europe, Dreissena are 

indigenous to the Dnieper River basin in the Ponto-Caspian region and highly adapted to 

a variety of temperatures and salinities while colonizing a variety a water bodies, from 

estuaries to rivers and lakes. High genetic diversity and polymorphism within the 

population, due to invasions attributed to human-mediated actions such as boat traffic 
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(Therriault et al., 2005), resulted in their rapid success. In North America, two congeners, 

first the zebra mussel (Dreissena polymorpha Pallus) in the late 1980s followed by the 

quagga mussel (Dreissena rostiformis bugensis Andrusov) in the early 2000s, have 

colonized all of the Great Lakes, as well as the Mississippi, Hudson, Ohio, and Colorado 

River basins. Although both congeners invaded simultaneously, zebra mussels initially 

proliferated extensively on nearshore rocky habitat and formed a ‘belt’ around the 

shoreline (Stanczykowska and Lewandowski, 1993), while quagga mussels were 

restricted to the offshore (Dermott and Munawar, 1993). Within a decade, zebra mussels 

were displaced due to K-strategy traits of the quagga mussel (Garton et al., 2014; Naddafi 

et al., 2009; Stoeckmann, 2003).  

By the early 2000s, the quagga mussel in Lake Michigan was largely extirpating 

the zebra mussel due to earlier spawning at colder temperatures (Roe and MacIsaac, 

1997) and lower energetic costs that gives it competitive advantage to withstand stress 

and low food conditions (Stoeckmann, 2003). In 2004 it was colonizing depths 

previously uninhabitable by the zebra mussel (Vanderploeg et al., 2002) and by 2010 it 

was the dominant congener (98 %) with high densities in both nearshore and offshore 

regions (Nalepa et al., 2010, 2009). Two phenotypically distinct but genetically similar 

morphs have been identified in the Great Lakes (Claxton and Mackie, 1998; Mills et al., 

1999; Vanderploeg et al., 2010) as well as in the Chebosksary Reservoir located along the 

Volga River in Russia (Pavlova, 2011). The shallow (or epilimnetic) morph has a high 

flat shell and tolerates warmer temperatures with more wave action, preferring to 

colonize hard substrate, while the profunda morph has an elongated shell and colonizes 

soft substrate and deeper depths (Claxton and Mackie, 1998; Claxton et al., 1998). The 
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profunda morph is highly adapted to extreme oligotrophic conditions in offshore Lake 

Michigan, with plasticity in shell morphology, infaunal tendencies, and a higher 

assimilation efficiency allowing it to spread to depths > 90 m (Baldwin et al., 2002; 

Nalepa et al., 2009; Vanderploeg et al., 2010).  

Numerous in situ and experimental studies on Dreissena in the Laurentian Great 

Lakes region highlight how extensive populations act both nutrient sources and sinks. 

The mussels are non-selective filter feeders (Jorgensen et al., 1984; Morton, 1969) that 

only distinguish food particles following ingestion (Sprung and Rose, 1988), with the 

rejection of non-food items through pseudofeces (filtered material expelled out of the 

inhalant siphon) (Lei et al., 1996). Because the freshwater mussels inhabit lakes of 

varying levels of productivity, the invaded systems are affected differently. In eutrophic 

systems such as Saginaw Bay and Lake Erie, dreissenid mussels can be a factor in 

promoting harmful algae blooms (HABs) by selectively rejecting the cyanobacterium M. 

aeruginosa in its pseudofeces (Vanderploeg et al., 2001), while in oligotrophic systems 

like Lake Michigan, phytoplankton primary production, abundance, and chlorophyll a 

decreased 70 %, 87 %, and 66 %, respectively, in the surface-mixed layer during the 

mixing period from the early 1980s to 2008 (Fahnenstiel et al., 2010). Focusing on Lake 

Michigan, Dreissena are capable of filtering up to 4 L day
-1

 (Bootsma et al., 2012) which, 

combined with densities of up to 19,000 m
-2 

(Nalepa et al., 2010),
 
can result in shifts in 

phytoplankton composition, reductions in phytoplankton biomass, and increased water 

clarity (Fahnenstiel et al., 2010; Vanderploeg et al., 2010, 2009, 2001).  

During Lake Michigan’s unstratified winter months, dreissenids could potentially 

access the entire water column (Nalepa et al., 2010). A comparison of phytoplankton 
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growth rates with mussel clearance rates suggests that quagga mussels have the potential 

to consume 74 % of phytoplankton production during the winter-spring isothermal 

mixing period (Fahnenstiel et al., 2000; Vanderploeg et al., 2010). Stratification in the 

summer and fall limits mussel access to the euphotic zone and could force profunda 

quagga mussels to increasingly rely on passively settling particles. Understanding the 

grazing capacity and means of food regulation to profunda mussels is critical in 

interpreting how dreissenids affect water column nutrients during stratification. Another 

question linked to mussel food consumption is the fate of grazed material. If a large 

portion of consumed food is allocated to mussel biomass or permanently buried as 

egestion, the benthic filter feeders may be an effective channel of nutrient removal. 

Nutrient sequestration in offshore Lake Michigan could place the oligotrophic system 

under further duress. The disappearance of the native ampiphod Diporeia spp., which 

used to account for nearly 65 % of benthic biomass in depths > 30 m in southern Lake 

Michigan (Nalepa, 1989), has already drastically reduced energy cycling between trophic 

levels, as dreissenid biomass is thought to serve as more an energy sink rather than a 

pathway (Nalepa et al., 2009). Whether grazed nutrients are recycled or sequestered can 

impact the spatial and temporal dynamics of nutrient distribution in Lake Michigan.  

Nutrient cycling in the offshore region of Lake Michigan is heavily dependent on 

seasonal dynamics and abiotic factors. Fluxes of nutrients and contaminants are 

hypothesized to be largely driven by sediment resuspension rather than external inputs 

(Brooks and Edgington, 1994; Eadie et al., 2002, 1984). A very small portion (< 3 %) of 

settling P becomes permanently buried, and P is likely made bioavailable from internal 

recycling and nutrient releases from sediment (Chen et al., 2002; Eadie et al., 1984; 
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Johengen et al., 1994). In the 1970s and 1980s, offshore sediment trap studies observed 

increased particle and nutrient fluxes during unstratified winter-spring mixing periods 

(Eadie et al., 1984), as well as during the summer stratified period (Meyers and Eadie, 

1993). High fluxes near the bottom correlated with the presence of a benthic nepheloid 

layer, a region of turbid bottom water created during the formation of the thermal bar and 

maintained during the stratified period at depths ≥ 40 m (Chambers and Eadie, 1981). 

Since the dreissenid invasion, fluxes into and within the profundal benthic region have 

not been studied.  Profunda mussels filtering directly on the sandy substrate could cause 

alterations to the sediment-water interface. Dreissena impact in the offshore is more 

difficult to monitor than the nearshore, but could provide insight into recent changes in 

Lake Michigan’s productivity. 

In the nearshore, Dreissena establishment modifies the physical environment, 

reengineers nutrient recycling, and increases nutrient retention (Hecky et al., 2004). The 

increased benthos nutrients have been linked to an increase of green filamentous algae 

Cladophora glomerata at shallow depths in the Great Lakes (Auer et al., 2010). The rapid 

expansion of the profunda phenotype in offshore Lake Michigan waters has often been 

implicated in changes to phytoplankton structure (Fahnenstiel et al., 2010) and nutrient 

concentrations (Mida et al., 2010; Vanderploeg et al., 2010). This expansion of mussel 

habitat has led to the hypothesis of the mid-depth sink (30-50 m) that works in 

conjunction with the nearshore shunt, intercepting the flow of C and P and effectively 

starving the offshore (Vanderploeg et al., 2010). Although mussel density and 

distribution in the offshore has been surveyed, few studies examine the role of the 

profunda mussel grazing, excretion, and egestion. Dreissenids can efficiently intercept, 
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sequester, and re-distribute nutrients in the well-mixed nearshore, but the effect of 

expansive offshore mussel grazing on a nutrient-depleted and thermally-stratified 

offshore pelagic region is poorly understood. 

2. Offshore mussel population and P cycling dynamics 

2.1 Background 

Since the dreissenid invasion, the nearshore shunt (Hecky et al., 2004) and mid-depth 

sink (Vanderploeg et al., 2010) support the theory of nutrient draw-down from the 

pelagic to the benthos and alteration of nutrient exchange between the nearshore and 

offshore. Dreissenids have been studied in shallow, well-mixed systems such as Lake 

Erie (Arnott and Vanni, 1996; Conroy et al., 2005) and Oneida Lake (Turner, 2010), but 

little is known about mussel grazing and nutrient cycling in the deeper waters of a 

stratified, oligotrophic system such as Lake Michigan. The proportions of P mussels 

graze, excrete and egest, and assimilate into tissue could affect the apportionment of P in 

the system if the filter feeding efficiency and population size are extensive enough. 

Quantifying P cycling by offshore quagga mussels is critical in understanding how these 

filter feeders act as nutrient recyclers and if they are sequestering a significant amount of 

nutrients in the profundal benthos.  

2.2 Purpose of study 

The purpose of this study is to evaluate and quantify the profunda quagga mussel 

population in offshore Lake Michigan. A recent mass balance model of Lake Michigan P 

shows a divergence between observed and simulated total P concentrations in the 

offshore after 1990, providing circumstantial evidence that dreissenids are increasing P 

assimilation efficiency and sequestering P in either the food web or sediment (Chapra and 
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Dolan, 2012). However, no studies have quantified profunda quagga mussel P cycling or 

observed the sequestration of P in mussel biomass, mussel egestion, or sediment.  

Observing pelagic nutrient profiles during the stratified season is critical in 

understanding how quagga mussels graze when they are cut off from the more productive 

regions of the water column (namely the euphotic zone). Comparisons with nearshore 

mussels demonstrate how the two Dreissena phenotypes cycle nutrients in a shallow, 

well-mixed region versus a deep, stratified system. Modelling, in situ measurements, and 

monitoring have indicated significant changes to nutrient concentrations and the food 

web since the dreissenid invasion (Chapra and Dolan, 2012; Fahnenstiel et al., 2010; 

Mida et al., 2010; Vanderploeg et al., 2010); however, few studies have been conducted 

to evaluate mussel impact in the offshore. 

2.3 Methods 

This study integrates field studies and experimental work to examine a 55 m site with a 

high profunda quagga mussel density site offshore from Milwaukee, WI. The mussel 

population was evaluated in terms of biomass and size distribution, as well as excretion, 

egestion, and grazing rates. The profunda morph was compared to the nearshore morph in 

order to better understand the differences between the two phenotypes. 

2.3.1 Study sites 

Profunda morph quagga mussels were collected from Lake Michigan at a depth of 55 m, 

approximately 19 km southeast of Milwaukee, WI (42°58.7853’N, 087°39.9348’W). The 

site was chosen because of its high profunda quagga mussel density and the potential 

capacity of mussels at this depth to be a significant nutrient sink (Vanderploeg et al., 

2010). A frequently monitored 10 m nearshore site in Atwater Bay near Milwaukee, WI 
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(43°5’46.1466, 087°51’52.5594) served as a comparison shallow (nearshore) site. Mussel 

densities were determined with replicate Ponar grabs at both the offshore and nearshore 

site. For offshore mussel analysis, densities and spatial variability were further assessed 

using an underwater camera mounted on the top of a 50 cm tall frame with a gridded 

base, which was lowered to rest on the lake bottom. Samples were collected once a 

month from April through October 2013, except for September. Mussels for experiments 

were collected with the Ponar grab, and experiments were conducted either onboard the 

research vessel or in the laboratory within three hours following collection.  

2.3.2 Field sampling 

On each sampling cruise to the offshore 55 m station, discrete water samples were taken 

with 5 L Niskin bottles at 2 m, 10 m, 20 m, 30 m, 40 m, 50 m, 53 m, and 55 m (bottom) 

for water chemistry (phosphorus, carbon, nitrogen, biogienic silica, and chlorophyll a). 

Water column profiles of temperature, conductivity, photosynthetic available radiation, 

dissolved oxygen, pH, and chlorophyll fluorescence were measured with a Seabird SBE 

25 CTD profiler. 

For mussel collection, at least 6 Ponar grabs were taken for one set of 

experiments. From 3 Ponar grabs, mussels were rinsed and placed in a container with 

unfiltered lake water during the cleaning process (2-3 hours). Mussels from the remaining 

Ponar grabs were immediately frozen for counting and length-weight analysis. Two 

Ponar grabs from June 2012 were used to assess mussel density and size distribution. 

Mussel density and size distribution was determined by counting and measuring mussels 

(1 mm resolution from 2 to 30 mm) from the remaining Ponar grabs that were collected 
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in June 2012, and April-August 2013. Ponar grabs from a 10 m site in Atwater Bay were 

collected in 2013 and counted for population structure and size density.   

2.3.3 Laboratory work 

Lake water was filtered onto Whatman pre-ashed GF/F filters for analysis of particulate 

C and N, particulate phosphorus, and chlorophyll a. Filtrate was kept for measurement of 

soluble reactive phosphorus (SRP) and total dissolved phosphorus (TDP). All phosphorus 

analysis was conducted using the molybdate-ascorbic acid method (Stainton et al., 1974) 

with absorbance measured at 885 nm using a 10 cm path length for dissolved P and 1 cm 

path length for particulate P. Particulate biogenic silica (BSi) was analyzed for the near-

bottom (53 m) and bottom (55 m) discrete water samples from each sampling date. 

Samples for measurement of BSi were filtered onto 0.6 µm membrane filters. Chl a was 

extracted with a 68 : 27 : 5 methanol-acetone-deionized water extraction solvent and 

measured on a Turner Model 10 Series Fluorometer. Filters for particulate C + N were 

acidified with 5 % HCl followed by rinsing with distilled, deionized water. These filters 

were analyzed with a continuous flow isotope ratio mass spectrophotometer interfaced 

with an elemental analyzer (Delta PlusXP, Thermofinnigan, Bremen).  

A length-weight relationship for profunda quagga mussels was established for 

each month (excluding 2012) by sacrificing 20-25 mussels immediately after the 

laboratory experiments were conducted. Mussel soft tissue was separated from shells and 

lyophilized, after which the mussel tissue was weighed for a tissue dry weight (DW). A 

length-weight relationship was established with the allometric equation W=aL
b 

 where W 

is the tissue dry weight (DW) and the L is the length of the shell in mm (Nalepa et al., 

1993). Size distributions were determined for each month and used in conjunction with 
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length-weight relationships to estimate total dreissenid biomass density (g m
-2

) for the 55 

m depth. A length-weight relationship calculated for the shallow morph in 2006 was used 

to compare to 2013 profunda morph length-weight relationships. 

2.3.4 Mussel excretion and egestion experiments 

Due to depth and location of the offshore 55 m site, laboratory experiments simulating in-

lake conditions were performed instead of in situ experiments. The morphology of all 

mussels used in the experiment conformed to that of the profunda morph, according 

observations made by Nalepa et al. (2010) and Vanderploeg et al. (2010). To quantify 

mussel excretion, egestion, and effective clearance rate, laboratory incubations were 

conducted within 3 hours of collection and immediately after a gentle cleaning of the 

shell. Upon collection and for the duration of the cleaning process, the mussels were 

placed in cold, unfiltered lake water in the dark to minimize stress and subsequent 

changes in physiological activity. Mussels were gently scrubbed with an abrasive cloth 

and then rinsed to remove algae and microbes from their shells. All mussels were 

carefully examined and only live, undamaged mussels were used in the experiment. For 

excretion / egestion experiments, mussels were grouped into 3 size classes: small (8-12 

mm), medium (13-17 mm), and large (18-22 mm). The length of mussels in each size 

class was measured to the nearest mm. Temperature (4-6 °C) was held constant at 

profundal benthos conditions and experiments were conducted in darkness to simulate the 

low-light environment in the offshore. 

Laboratory incubation experiments were conducted in 1 L acid-washed (5 % HCl) 

polyethylene incubation chambers. Approximately 450 mussels were gently cleaned, and 

50 mussels from each size class (8-12 mm, 13-17 mm, 18-22 mm) were placed in each of 
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3 triplicate chambers containing 1 L of filtered lake water, for a total of 9 incubation 

chambers. One 1 L incubation chamber with filtered lake water served as a control. The 

chambers were covered and placed in a dark incubation room at 4-6 ºC. Chambers were 

incubated undisturbed for 2 hours. Measurements made with an optical (NeoFox Sport 

micro-optode system) dissolved oxygen (DO) probe indicated that the DO concentration 

remained above 90 % saturation during incubations. Following chamber incubations, 

600–700 mL of water was collected and filtered (ashed, 0.45 µm Whatman GF/F) for 

dissolved and particulate phosphorus analysis using the method described previously. In 

October 2013, in order to better determine the excretion and egestion rate relationship to 

tissue dry weight (mg), an additional smaller scale laboratory experiment using the same 

methodology was conducted using 60 mL glass syringes with 3 mussels per syringe and 4 

size classes (4-6 mm, 8-12 mm, 13-17 mm, and 18-22 mm). 

2.3.5 Measurement of mussel effective clearance and grazing rate 

Measuring pumping and effective clearance rate is critical in understanding the potential 

effect of dreissenid grazing on the plankton community. For Lake Michigan, previous 

observations suggest that this effect can be significant (Fahnenstiel et al., 2010; 

Vanderploeg et al., 2010). In the present study the pumping rate (PR) is defined as the 

volume of water passing through mantle cavity per unit time (Yu and Culver, 1999) and 

the clearance rate (CR) is the volume of water cleared of particulate matter per unit time 

(Fanslow et al., 1995). Previous laboratory and in situ methods examining dreissenid 

pumping and clearance rates have used lab-grown algae (Ackerman, 1999; Berg et al., 

1996; Horgan and Mills, 1997), natural lake seston (Fanslow et al., 1995; Vanderploeg et 

al., 2009, 2001; Yu and Culver, 1999), mixed cultured and natural algae (Baldwin et al., 
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2002; Vanderploeg et al., 2001), dye injection (Bunt et al., 1993), plastic microspheres 

(Lei et al., 1996), and inorganic sediment particles (Diggins, 2001; Madon, Schneider, 

Stoeckel, & Sparks, 1998). These experiments provide quantifiable rates, but do not 

always reflect the in situ CR, as they may ignore refiltration (Yu and Culver, 1999) or 

any in situ fluctuations in temperature, current velocity, and seston abundance or seston 

quality. Yu and Culver (1999) applied a method in which the mussel egestion of 

inorganic material and the concentration of suspended inorganic material were used to 

estimate an in situ ‘effective clearance rate’ (ECR). This method is based on the premise 

that, for inorganic material, rates of mussel egestion rate are equal mussel ingestion. Yu 

and Culver’s approach required an experimental duration of several days for measurable 

quantities of egested inorganic material to be collected. Their approach also required a 

correction for passively settling inorganic material. We modified Yu and Culver’s 

method by measuring biogenic silica (BSi) instead of inorganic seston. This allowed us to 

determine effective clearance rates using short-term experiments because small amounts 

of egested BSi can be measured accurately using the spectrophotometric method. Si is not 

assimilated by mussels and unlikely to dissolve at the low pH levels in the mussel 

digestive system, so we can assume that BSi egested (as feces and pseudofeces) is equal 

to BSi ingested. A similar approach has been used previously to measure assimilation 

efficiency in copepods (Tande and Slagstad, 1985).  

Using the above method, the ECR of quagga mussels was determined as: 

 ECR =EBSi/[BSi]       

where ECR = L mussel
-1 

h
-1

 

 EBSi = BSi egestion rate (µmol BSi mussel
-1

 h
-1

) 
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 [BSi] = BSi concentration immediately above the mussel bed (µmol L
-1

) 

The phosphorus grazing rate was then determined as: 

 GP = ECR [PP]        

where GP = (µmol P mgDW
-1

 h
-1

) 

[PP] = Suspended P concentration 10 m above the mussel bed (µmol L
-1

)
 

Effective clearance rate and grazing rate experiments were done simultaneously 

with the mussel excretion and egestion experiments as described above. Following 

incubations, 100-200 mL of water was filtered (0.6 µm membrane filters) for particulate 

BSi analysis. Water column particulate BSi was analyzed for the near-bottom samples 

which were collected with a Niskin from the 55 m site for each experimental date. All 

BSi filter samples were digested in 1 % Na2CO3 for 2 hours in a water bath at 85 °C 

(Demaster, 1981; Saccone et al., 2006), followed by spectrophotometric analysis of 

soluble reactive silica (Stainton et al., 1974). A series of preliminary experiments using 

various combinations of temperature, digestion time, and Na2CO3 concentrations with 

Lake Michigan sediment indicated that this method results in complete digestion of 

biogenic Si with minimal dissolution of non-biogenic Si.  

2.3.6 Statistical analyses 

Statistical analyses were performed with the open-sourced statistical programming 

package R®. An ANCOVA was preformed to look at differences between the length-

weight relationships. Mussel excretion and egestion rates were analyzed with ANOVA 

and pair-wise Tukey’s Honest Significant Difference Test (HSD) to determine any 

significant differences between dates and size classes. 

2.4 Results 
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2.4.1 Ambient conditions during study period 

Temperature profiles at the 55 m station indicate that thermal stratification commenced 

between ~20 m in early June and remained weakly stratified until mid-October, with 

bottom temperatures remaining relatively constant (3-6 
o
C)  and not dropping below 3 °C 

during the entirety of the study period (Figure 1). Thermal profiles also indicate the 

presence of a deep chlorophyll layer (DCL) below the thermocline during summer 

stratification (June-October).  
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Figure 1: Chlorophyll a (µg L
-1

) (□), in situ fluorescence (RFU) (dashed), and temperature (°C) (solid) 

profiles for the 55 m site in 2013 for April 29, June 19, July 16, Aug. 21 and Oct. 17 (note different scales). 
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During the stratified period, particulate phosphorus (PP) concentrations tended to 

decrease with depth below the thermocline, while soluble reactive phosphorus (SRP) and 

dissolved organic phosphorus (DOP) concentrations tended to increase or stay constant 

(Figure 2). The highest PP concentrations were in the mid water column (20-30 m), but 

remained low near the lake bottom. A similar spatio-temporal pattern was observed for 

chlorophyll a (Figure 1). SRP concentrations at the surface (< 20 m) were low (< 0.017 

µmol L
-1

) throughout the study period, but following stratification there was a slight 

increase in hypolimnetic (≥ 20 m) SRP concentrations, with the highest measured 

concentration being 0.065 µmol L
-1

. Examining the partitioning of P in the water column, 

particulate P constitutes between 35-41 % of water column total P on April 29 (an 

unstratified date), while from June through October (stratified period), the percentage of 

particulate P remains high (36-53 %) at depths ≤ 40 m, while ≥ 50 m particulate P is only 

18-27 % of total P. 

Epilimnetic seston C : P molar ratios were consistently above 150 : 1 during the 

study period, suggesting strong P limitation of phytoplankton growth (Healey and 

Hendzel, 1979).  For the epilimnion (< 20 m), the C : P ranged from 112 : 1  to 301 : 1, 

and the hypolimnion (≥ 20 m)  ranged from 124 : 1 to 288 : 1, much higher than the 

recommended C : P ratio of 106 : 1 (Redfield, 1958). There was no discernible pattern in 

P-limitation, except that higher ratios were usually found at the surface (2 m) and benthos 

(52-56 m). 
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Figure 2: Ambient water column soluble reactive P (SRP), dissolved organic P (DOP), and particulate P 

(PP) (µmol L
-1

) plotted against temperature (°C) for the 55 m site in 2013 for April 29, June 19, July 16, 

Aug. 21, and Oct. 14 (note different scales). 

 

2.4.2 Mussel density and size distribution  

Table 1: Percentage of profunda quagga mussel population within various size classes at 55 m based on 

Ponar grabs collected in 2012 and 2013. The number of Ponar grabs counted is in parentheses. 

Length (mm)     

 June 19 2012 

(2) 

April 29 2013 

(3) 

July 16 2013 

(3) 

Aug. 21 2013 

(2) 

<8 38.9 ± 19.0 62.2±7.4 51.6±6.6 40.3±23.7 

8-12 25.5 ± 8.7 11.2 ± 2.3 17.1 ± 3.0 23.2 ± 7.4 

13-17 22.4 ± 11.0 17.6 ± 7.6 24.1±0.4 27.3±10.7 

18-22 7.6 ±3.7 6.7±1.5 5.7±1.6 7.2±4.7 

>22 5.6±2.7 2.2±0.6 3.5±2.5 2.0±1.0 

     

 

From Ponar grabs collected from 2012 and 2013, profunda D.r bugensis density at the 55 

m station was 9968 ± 3232 m
-2
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mm, with an average of 92.8 % < 17mm (Table 1). Length-weight relationships and 

biomass (g m
-2

) for the 55 m station were calculated from subsampled mussels from 

May-October 2013 (Figure 3, Table 2). Profunda quagga mussels gained mass throughout 

the summer, with the length-weight relationships of May and October being significantly 

different (ANCOVA, p  <  0.001). Highest calculated biomass for July and August 2013 

is likely associated with gained tissue, since the population structure derived from the 

Ponar grabs remained unchanged (Table 2).  

Table 2: Length-weight relationships for profunda quagga mussels in 2013. Mussels (n=25) were 

subsampled for each month from laboratory experiments. Using allometric relationships, mussel dry tissue 

biomass (g m
-2

) was derived from Ponar grabs collected each month (except October). Profunda length-

weight relationships from each month were compared to a length-weight relationship derived from shallow 

(10 m) mussels from a comparable nearshore region in the southern basin of Lake Michigan. *2012 Ponar 

grabs ** not depicted in Fig3 
 

Month DW=aL
b
, r

2 
Biomass (g m

-2
) 

Profunda May 2013  0.0058L
2.43

, 

0.74 

22.4 ± 4.73 

Profunda June 2013  0.022L
2.86

, 

0.96 

21.73 ± 0.74* 

Profunda July 2013  0.0143L
2.28

, 

0.83 

45.9 ± 13.24 

Profunda Aug. 2013  0.0066L
2.59

, 

0.97 

42.4 ± 15.61 

Profunda Oct. 2013  0.0035L
2.77

, 

0.97 

- 

   

Profunda 2013** 0.005L
2.61

, 

0.85 

- 

Shallow 2006 0.0018L
3.11

, 

0.95 

- 

 

Size distribution and length-weight relationships (log10 (x + 1) transformed) of 

profunda quagga mussels from the 55 m station  were compared with those measured for 

shallow quagga mussels collected at a 10 m station in Atwater Bay, WI. There was a 

significant difference for length-weight relationships between shallow (W=0.0018L
3.11

, 
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r
2
= 0.95) and profunda (W=0.005L

2.61
, r

2
=0.85) quagga mussels in the southern basin of 

Lake Michigan (ANCOVA, p  < 0.001) (Figure 3).  

 

Figure 3: Length-weight relationships (DW=aL
b
) for subsampled (n=25) profunda quagga mussels from 5 

experimental dates from May through October in 2013 compared to a length-weight. 

 

Smaller profunda and shallow mussels have similar weights for a given length, but larger 

shallow mussels are heavier than their offshore counterparts for a given length. For 

example, 7 mm shallow and profunda quagga mussels weigh approximately 0.80 mg, 

while shallow mussels > 10 mm become nearly twice as heavy as profunda mussels. 

Underwater camera imagery revealed that the 55 m site had some spatial and temporal 

variability, with most quagga mussels in clumps and aggregates on the sandy bottom 

(Figure 4).  

Mussel size distribution from 2013 Ponar grabs collected from a nearshore (10 m) 

and offshore (55 m) site near Milwaukee, WI show two very different population 

structures (Figure 5). In the nearshore, the population structure is dominated 

predominately by mussels > 15 mm, while in the offshore most mussels are ≤ 15 mm. 

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

D
ry

 W
ei

g
h

t 
(m

g
) 

Length (mm) 

Profunda May 2013

Profunda June 2013

Profunda July 2013

Profunda Aug. 2013

Profunda Oct. 2013

Shallow 2006



www.manaraa.com

24 

 

 

Comparing mussel size distributions for these Ponar grabs, the 10 m nearshore site had a 

lower mussel density (4785 ± 1329 mussels m
-2

) but higher biomass (93.82 ± 10.65 g m
-

2
) than the offshore site (9358 ± 3464 mussels m

-2
 and 34.95 ± 17.20 g m

-2
). The mean 

(±SD) P content of profunda mussel dry tissue is 0.22 ± 0.03 µmol P mgDW
-1

 for 125 

mussels subsampled during the 2013 summer. There was no significant different in P 

tissue content between dates (ANOVA, p=0.09).   

 

Figure 4: Profunda quagga mussel density at 55 m site taken with an underwater camera that was mounted 

on a 50 cm tall frame with a gridded base where each individual square is 10 x 10 cm. 
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Figure 5: Comparison of length-frequency distributions of nearshore (10 m) and offshore (55 m) quagga 

mussels collected in 2013. Five Ponar grabs were collected from a 10 m nearshore site (43°5’46.1466 N, 

087°51’52.5594 W; n=1021) and 4 Ponar grabs were collected from a 55 m offshore site (42°58.7853 N, 

087°39.9348 W; n=1732) in the southern basin of Lake Michigan. 
 

2.4.3 Measurement of mussel excretion and egestion  

Profunda quagga mussel phosphorus excretion and egestion rates were normalized to 

tissue dry weight and compared between 3 size classes of small (8-12 mm), medium (13-

17 mm), and large (18-22 mm) on 5 experimental dates (May 1, June 12, July 16, August 

21, and October 14) in 2013. A small scale incubation experiment in October observed 

mass specific excretion (SRP and DOP) and egestion (PP) rates for profunda quagga 

mussels < 8 mm (Figure 6). Due to the singular nature of the small scale October 

experiment, the main focus of the study will rely on experiments conducted on the 5 

experimental dates with the 3 size classes (8-22 mm). 
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Figure 6: Profunda quagga mussel dry weight-specific excretion rate for SRP (R=0.01DW
-0.343

, r
2
=0.75 and 

TDP (TR=0.0152DW
-0.711

, r
2
=0.48) and egestion rate (E=0.0531DW

-0.791
, r

2
=0.87) at 5 °C and 0.04 µmol 

PP L
-1 

derived from October 2013 small-scale phosphorus excretion and egestion experiments. Shallow 

mussel R (upper left hand) derived from experiments conducted at 23 °C and a food concentration of 

0.22µmol PP L
-1 

(R=0.1525DW
-0.7617

, r
2
=0.86)

   
(Bootsma, 2009). 

 

Comparing SRP excretion for shallow mussels (Bootsma, 2009) with SRP 

excretion of profunda mussels in Figure 5, a two-way ANOVA shows a significant 

difference between the profunda and shallow morph (p = 0.022). The shallow morph 

excretion ranges from 0.012 to 0.12 µmol SRP mgDW
-1

 d
-1 

 (Bootsma, 2009) while the 

profunda morph ranges from 0.004 to 0.010 µmol SRP mgDW
-1

 d
-1

.  Shallow mussels 

with a dry tissue weight of 10 mg excrete 4 times more SRP than profunda mussels of 

similar mass. As tissue dry weight increases, the difference between the shallow and 

profunda SRP excretion rates decrease, but 100 mg shallow mussels still excrete twice 

the SRP of profunda mussels.  
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Figure 7: Profunda quagga mussel morph and shallow quagga mussel morph. 

 

A two-way ANOVA shows no significant difference for profunda quagga mussel 

SRP excretion (R) between the 5 experimental dates (p = 0.28) or between the 3 size 

classes (p = 0.20) (Figure 8). For profunda mussel total dissolved phosphorus (TDP) 

excretion rates (TR), there was no significant difference between size classes (p = 0.20) 

but a significant difference between experimental dates (p = 0.005) (Figure 6). A pair-

wise Tukey’s Honest Significant Difference test (HSD) showed a significant difference 

between July and August (p = 0.0035) and between August and October (p = 0.0165). 

For August, the dissolved organic phosphorus (DOP) (determined as difference between 

excreted SRP and TDP) was elevated in all three size classes compared to other dates 

(Figure 8). DOP concentrations in mussel phosphorus excretion experiments were, on 

average, about half of excreted TDP, with a mean (±SD) of 0.0008 ±0.001 µmol mgDW
-1

 

d
-1

 excluding high rates in August (Figure 8). The August water column concentration of 

DOP immediately above the mussel bed was doubled in comparison to other dates (0.086 

µmol L
-1

) and could be linked to higher excretion on this date. When considering the total 

Profunda Shallow 
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amount of phosphorus excreted by mussels, TDP excretion was used all calculations in 

order to account for all phosphorus in mussel excretion (including DOP).  
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Figure 8: Soluble reactive P (SRP) excretion (R), total dissolved P excretion (TR), dissolved organic P 

excretion (RDOP), particulate P egestion (E), and total dissolved P excretion + particulate P egestion 

(TR+E) in µmol P mgDW
-1

 d
-1

 (note different scales) for May through October 2013 incorporating small 

mussels (8-12 mm), medium mussels (13-17 mm), and large mussels (18-22 mm). 

 

Particulate P egestion rates (E) was similar to excretion rates, showing relatively 

fixed rates throughout experimental dates, except for June (Figure 8). There was no 

significant difference between size classes (p = 0.051), and with the exception of high 

rates in June, no significant difference between experimental dates (p = 0.066). Small 

mussels (8-12 mm) in June egested at an order of a magnitude higher than the mean of all 

other dates. Due to the uncertainty in the egestion measurement in June, these rates were 

excluded from mean egestion calculations. Total phosphorus excretion + egestion by 

profunda mussels is calculated as total dissolved phosphorus (TDP) excretion (TR) plus 

egestion (E) and  is relatively constant throughout the experimental period (Figure 8). For 

all size classes, the mean (±SD) total phosphorus excretion + egestion rate is 0.0049 ± 

0.0034 µmol P mgDW
-1

 d
-1

 (excluding June). There was no significant difference for 

total phosphorus profunda mussel excretion + egestion between size classes (Figure 9).  
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Figure 9: Mean (±SD) total dissolved P excretion (TR) and particulate P egestion (E) for 3 sizes classes of 

profunda quagga mussels incorporating all 5 experimental days at a 55 m depth in the southern basin 

offshore Lake Michigan (µmol P mgDW
-1

 d
-1

).  

 

2.4.4 Measurement of mussel effective clearance and grazing rate 

An effective clearance rate (ECR) and P grazing rate were calculated for profunda 

quagga mussels on two experimental dates in conjunction with phosphorus excretion and 

egestion experiments. ECR was calculated per mussel and per mg DW for each of the 3 

mussel size classes in June and October. On each date, ECR calculated per mussel 

increased with mussel size while ECR per mg DW decreased (Figure 10). Per mussel, 

small and medium mussels (8-17 mm) in June cleared approximately 4 L d
-1

 and large 

mussels (18-22 mm) cleared close to 8 L d
-1

, while in October, small and medium 

mussels cleared between 1-2.5 L d
-1

 and large mussels cleared close to 4 L d
-1

. 

Normalized to dry tissue weight, ECR was higher in small mussels compared to larger 
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mussels. June had a higher ECR than October, with 0.37 to 3.65 L mgDW
-1

 d
-1

 in June 

compared to 0.19 to 1.09 L mgDW
-1

 d
-1

 in October.  

 

 

Figure 10: Mean (±SD) Effective Clearance Rate (ECR) for small (8-12 mm), medium (13-17 mm), and 

large (18-22 mm) mussels for June 12 and October 14.  Rates are per mussel (L mussel
-1

 d
-1

) and per 

mgDW (L mgDW
-1 

d
-1

).
  

  

A mean (±SD) water column particulate P concentration for the 10 m above the 

lake bottom was used as the mean food concentration for estimating P grazing rates. The 

mean food concentration for June and October was similar (0.02 ± 0.01 µmol L
-1

) and 

applied to the effective clearance rates calculated for the three size classes on both dates. 

In June, the mean (±SD) grazing rate for mussels 8-22 mm was 0.027 ± 0.024 µmol PP 

mgDW
-1

 d
-1

, while the mean (±SD) grazing rate for October was lower at 0.009 ± 0.006 

µmol PP mgDW
-1
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. June grazing rates were overall higher than October grazing rates, 
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as well having a broader range of values. In attempting to reconcile the two 

methodologies used to estimate the P recycling rate of profunda quagga mussels, the P 

rates in µmol mgDW
-1

 d
-1

 were compared for mussel grazing and mussel excretion + 

egestion (Figure 11). The values above the bars represent the percentage measured P 

excretion + egestion constitutes out of estimated P grazing. 

 

 

Figure 11: Mean (±SD) Excretion + Egestion and Grazing in µmol P mgDW
-1

d
-1

 for small (8-12 mm), 

medium (13-17 mm), and large (18-22 mm) mussels for June 12 and October 14.  The percentage that 

Excretion + Egestion constitutes out of Grazing is above each bar. 
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compared to the nearshore phenotype (Bootsma, 2009). During unstratified (May) and 

stratified (June, July, August, and October) months, mass specific excretion and egestion 

rates are low and relatively constant. Temperature has been shown to be a primary driver 

in mussel respiration and subsequently nutrient excretion, with higher temperatures 

correlating with higher excretion rates (Bootsma and Liao, 2014; Tyner, 2013). Profundal 

benthos ambient water conditions (temperature, chlorophyll a, particulate C and P) from 

May through October 2013 are relatively similar. Constant low temperatures (< 6 °C) in 

the profundal benthos and low food supply in the hypolimnion likely limits quagga 

mussel metabolism, including grazing and nutrient excretion and egestion. Water column 

profiles of particulate P and chlorophyll a at the 55 m site depict decreasing 

concentrations near the lake bottom, indicating a high amount of mussel grazing and 

lowered concentrations of phytoplankton above mussel beds. The uniformity of the 

profundal environment likely creates little variation in nutrient excretion and egestion, as 

the deep-water phenotype is adapted to an unchanging cold and oligotrophic 

environment. 

Most previous studies of dreissenid nutrient cycling have focused on dissolved 

nutrients (Arnott and Vanni, 1996; Conroy et al., 2005; Ozersky et al., 2009; Turner, 

2010), with nutrient egestion rates remaining relatively unstudied. From mussel grazed 

material, assimilation and egestion appears to constitute larger portions than excretion. 

Excretion has been the focus of mussel impact on nutrient cycling, but with mussels 

possibly acting as a nutrient sink in the benthos, egestion needs to be more thoroughly 

investigated. Egestion rates from this study range from 0.0007 to 0.0061 µmol PP 

mgDW
-1

 d
-1

, and for all dates (except June), egestion represents up to 1/2 of P cycled by 
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mussels. Hence, ignoring the egestion of particulates leaves a significant portion of 

mussel nutrient cycling undocumented. All size classes in June egested at a rate nearly a 

magnitude higher than the mean, despite similar ambient water conditions. These 

anomalously high rates highlight the need for better quantification of mussel nutrient 

egestion and investigation into whether the driving forces for excretion (temperature and 

food supply) also apply for egestion. Even in a low-food environment, how mussels 

portion the grazed nutrients between assimilation, excretion, and egestion provides 

insight to the amount of P mussels sequester versus how much they recycle back into the 

environment.  

Dissolved organic phosphorus (DOP) excretion is determined indirectly by 

subtracting SRP from TDP excretion and is another relatively understudied component of 

mussel nutrient cycling. DOP is usually excreted at a lower rate than SRP, but in August 

DOP constituted ~80 % of dissolved nutrient excretion and was nearly 10 times higher 

than the mean DOP excretion. This experimental date also had much higher ambient 

DOP concentrations, and the erraticism in DOP mussel excretion and higher ambient 

DOP concentrations may be due to immediate water conditions above the mussel bed. 

Similar to mussel egestion, further investigation is needed to understand the mechanisms 

influencing DOP excretion.  

Methodological variation could account for some differences in measured mussel 

excretion values. For zebra mussel excretion experiments at comparable temperatures 

(17-22 °C), Arnott and Vanni (1996) obtained values ranging from 0.020 to 0.053 µmol 

SRP mgDW
-1

 d
-1

 for experiments conducted immediately after collection using unfed 

mussels (< 13.5 mm), while Mellina et al. (1995) had a pre-acclimation period of several 
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months, fed mussels (20 mm) lab-grown algae, and measured excretion at 0.003 to 0.004 

µmol SRP mgDW
-1

 d
-1

. Using different experimental set-ups but the same mussel 

species, there was a magnitude difference in dreissenid excretion. Any discrepancy in 

experimental set-ups should be considered when comparing nutrient excretion rates. 

2.5.2 Offshore versus nearshore mussels 

In order to overcome methodology inconsistencies, the experimental set-up and 

collection region near Milwaukee, WI was kept consistent. For the 2006 shallow quagga 

mussel and the 2013 profunda quagga mussel experiments, mass specific mussel 

excretion is measured using unfed mussels within hours of collection. Mussel excretion 

and egestion rates decrease quickly after mussels are deprived of their food source due to 

a mussel gut residence time of several hours (Bootsma, 2009), and conducting 

experiments as soon as possible allows for the measurement of mock in situ rates. 

Comparing mass specific rates of profunda quagga mussel SRP excretion at 5 °C and 

shallow quagga mussel SRP excretion at 23 °C,  mean (±SD) profunda mussel excretion 

rates (0.0016 ± 0.001 µmol SRP mgDW
-1

 d
-1

) are almost 20 times lower than the mean 

(±SD) mass specific rates for the shallow morph (0.029 ± 0.032 µmol SRP mgDW
-1

 d
-1

) 

(Bootsma, 2009). When comparing rates of shallow and profunda quagga mussels, it is 

important to consider temperature and food supply, as well as physiological differences. 

For shallow mussel experiments by Bootsma (2009), temperature is nearly 5 times 

greater and food concentration 6 times greater than experimental conditions for the 

profunda morph. Some previous studies measure in situ rates for nearshore mussels 

(Bootsma, 2009; Ozersky et al., 2009), but such experiments are more difficult to conduct 

in the profundal habitat due to SCUBA limitations.  
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2.5.3 Accounting for mussel population size distribution 

The profunda mussel population at deeper depths appears to not have changed in the past 

five years. In 2008, a 45 m site offshore from Waukegan, WI was estimated to be 9060 ± 

2533 mussels m
-2

 with the majority (97.6 %) of the mussel population at depths  ≥  50 m 

to be < 15 mm (Nalepa et al., 2010). Videography of the 55 m station indicates that the 

few changes in spatial density arise from physical constraint, as the mussels have 

effectively ‘carpeted’ the bottom of the study site. The abundance of smaller mussels (≤ 

17 mm) in the offshore versus the nearshore could be due to abundance of round gobies 

(Neogobius melanostomus) that have been thought to predate on smaller mussels (< 10 

mm) and alter the population size structure (Ray and Corkum, 1997). Comparison of 

video footage reveals a strong presence of round gobies in the nearshore (Atwater Bay 10 

m), while none were spotted in the offshore (55 m). The areal density of mussels in the 

offshore is nearly double the nearshore (10,000 mussels m
-2

 versus 5,000 mussels m
-2

), 

but offshore biomass (g m
-2

) is only 37 % of nearshore biomass. Higher densities but less 

biomass is due to profunda mussels having lower length-specific weights and a 

population dominated by small mussels. Profunda mussels are specifically adapted  to an 

oligotrophic habitat with lower length-specific weights and phenotypic plasticity 

distinguished by a thinner shell, elongated shape, and infaunal tendencies (Claxton and 

Mackie, 1998; Nalepa et al., 2009). Looking at the stability of the population structure 

and length-weight relationships of profunda mussels throughout the summer, the filter 

feeders appear to gain mass, with an estimated mean (±SD) biomass in May of 22.4 ± 

4.73 g m
-2

 increasing to 42.4 ± 15.61 g m
-2

 in August.  
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Because of significant differences in excretion rates between shallow and 

profunda quagga mussels, accurate measurements of nutrient excretion and egestion by 

both phenotypes are necessary when considering the lake-wide effect of mussels in Lake 

Michigan. In the nearshore, accurate size distribution is critical, as previous studies have 

found that nearshore Dreissena have high nutrient assimilation and mass specific 

excretion rates, especially small size classes (Arnott and Vanni, 1996; Bootsma, 2009; 

Conroy et al., 2005; Naddafi and Pettersson, 2008). For this study, the profunda 

phenotype (8-22 mm) did not display significantly different mass specific excretion rates. 

A singular small-scale experiment demonstrates that mussels 4-6 mm have mass specific 

SRP excretion rates 6.4 times greater, TDP mass specific excretion rates 4.9 times 

greater, and PP egestion rates 20.7 times greater than the mean excretion and egestion for 

mussels ≥ 8 mm. This indicates that profunda mussel mass normalized P excretion and 

egestion is likely inversely related to dry tissue weight for mussels < 8 mm. However, 

more research needs to be conducted on small profunda quagga mussels in order to 

quantify these rates and better define the mass specific relationship. With a mean offshore 

population density of 10,000 mussels m
-2

 and ~50 % small mussels < 8 mm, the areal P 

impact of mussel cycling could be underestimated if all mussels are given a constant rate 

regardless of size.  

In calculating areal P rates (excretion + egestion m
-2

) for the a high mussel density 

55 m site in Lake Michigan, it is assumed that mussels 8-22 mm have a relatively 

constant rates of excretion and egestion, and mussels < 8 mm are scaled appropriately 

(TDP excretion ~5 times greater and PP egestion ~21 times greater). A 2013 profunda 

mussel length-weight relationship (W=0.005L
2.61

) provides approximate mgDW mussel
-1

, 
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which are applied to mean mussel size class distributions and densities (mussels m
-2

) 

from 2012-2013 Ponar grabs. The subsequent mgDW m
-2

 is applied to mean excretion 

(TDP) and egestion (PP) rates (µmolP mgDW
-1

 d
-1

) derived from profunda mussel 

experiments. Using measured values for mussels 8-22 mm and scaled values for mussels 

< 8 mm, the mean areal P excretion and egestion by profunda quagga mussels at the 55 m 

site is 215 µmol P m
-2

 d
-1

. Comparing this to the standing stock of P bound in mussel 

biomass (calculated using a mean (±SD) mussel dry tissue P content of 0.22 ±  0.03 µmol 

P mgDW
-1

 and mean (± SD) biomass of 3324 ± 1461 mgDW m
-2

), P sequestered in 

mussel biomass at the 55 m site is approximately 745 µmol P  m
-2

. In a year, mussels can 

cycle over a 100 times more P than is sequestered in biomass at a given point in time. 

This rough estimate of areal P only applies to a single site with high profunda mussel 

density, but exemplifies the nutrient cycling efficiency of profunda mussels in 

comparison to nutrients sequestered in biomass. 

2.5.4 Mussel grazing in the offshore 

Profunda mussel effective clearance rates (ECR) are inversely related to dry tissue 

weight, with smaller mussels having increased filtering per mgDW compared to larger 

mussels. Clearance rates have been found to vary in relation to mussel weight (Lei et al., 

1996), with large mussels filtering higher volumes than small mussels. Profunda mussel 

ECR at 5 °C ranged from 1 to 8 L mussel
-1

 d
-1

. In comparison, Yu and Culver (1999) 

measured zebra mussel ECRs in a small inland reservoir from 0.36 to 1.66 L mussel
-1

 d
-1

 

at 27 °C using a similar methodology. Looking at mass normalized effective clearance 

rates of zebra mussels using natural seston in Saginaw Bay, Fanslow et al. (1995) 

measured a range from 0.1 to 0.98 L mgDW
-1

 d
-1

 with temperatures ranging from 6 to 25 
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°C. In Lake Michigan, the mass normalized ECR for profunda quagga mussels was 

comparable with a range of 0.23 to 0.84 L mgDW
-1

 d
-1

 (with an outlier of 2.81 in June) at 

a temperature of 6 °C. Due to only having two experimental dates, it is difficult to discern 

the reason for differences in ECR between June and October. Both dates have similar 

water column particulate P profiles, which are indicative of food availability to mussels 

and can affect clearance rates, despite June having higher ECR. Studies on mussel 

clearance rates have found that filtration is highest at low food concentrations (Fanslow 

et al., 1995; Sprung and Rose, 1988), and low food conditions in Lake Michigan’s 

hypolimnion could potentially result in overall slightly higher effective clearance rates 

compared to effective clearance rate of zebra mussels or the nearshore phenotype.  

The oligotrophic environment of offshore Lake Michigan is unlike other studies, 

where the incipient limiting threshold is usually reached due to high particulate 

concentrations (Ackerman et al., 2001; Fanslow et al., 1995; Kryger and Riisgard, 1988; 

Sprung and Rose, 1988). Although it has been hypothesized that zebra mussels lower 

their filtering activity during times of low food concentrations as an energy saving 

measure (Horgan and Mills, 1997), a greater pumping rate by profunda mussels may be 

necessary to obtain sufficient food to meet basal metabolic requirements. In the only 

other study examining profunda quagga mussel filtering rates at low temperatures (1-7 

°C), Vanderploeg et al. (2010) estimated that profunda quagga mussels (22 mm) in Lake 

Michigan filter 3.12 L mussel
-1

 d
-1

.  By comparison, profunda mussels from the 55 m site 

of similar length (18-22 mm) had a higher ECR range (3.89 to 7.83 L mussel
-1

 d
-1

). 

Although mussels from the 55 m have higher estimated filtration rates, they are still 

within a reasonable range, and any differences between the experiments could be because 
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of immediate environmental conditions, such as particle concentrations and / or currents, 

above the mussel bed. Based on physiological differences, such as quagga mussels 

having lower respiration and higher assimilation efficiency than zebra mussels (Baldwin 

et al., 2002; Stoeckmann, 2003), it is possible profunda mussels have higher effective 

clearance rates because the incipient limiting threshold is never reached. Even though the 

measured profunda mussel ECR is slightly higher than previous studies (Fanslow et al., 

1995; Vanderploeg et al., 2009; Yu and Culver, 1999), it likely reflects the oligotrophic 

environment where the deep-water phenotype thrives. 

Estimated P grazing rates were twice as large as measured P excretion + egestion 

rates, except for small mussels in October. For this size class, near zero TDP excretion 

rates resulted in a low P excretion + egestion value. Overall, these estimated grazing rates 

calculated from a mean particulate P concentration within 10 m of the lake bottom are 

higher than expected. Excretion + egestion should constitute a large majority of grazed 

material, based on a study of the zebra mussel energy budget that hypothesizes that 

metabolic costs (oxygen consumption and nutrient excretion) comprises > 90 % of energy 

consumption, while growth and reproduction constitutes 5-10 % (Stoeckmann and 

Garton, 1997). Quagga mussels are more adapt at surviving low food conditions with a 

significantly higher assimilation efficiency than zebra mussels (Baldwin et al., 2002), 

therefore an energy budget for profunda quagga mussels may be slightly different. 

However, the rates of excretion + egestion suggest that at least half of grazed material is 

either excreted as dissolved TDP or egested as PP. More research is needed on profunda 

quagga mussel grazing rates with in situ food concentrations in order to accurately 
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capture the amount of P mussels recycle. In the context of this study, P excretion + 

egestion is assumed to represent grazing to avoid overestimation. 

3. Impact of offshore mussels on Lake Michigan P dynamics 

3.1 Background 

Before the Dreissena invasion, sinking nutrients in offshore Lake Michigan were 

recycled back in the water column via either biotic (e.g. Diporeia spp. and microbes) or 

abiotic (sediment resuspension, dissolution) mechanisms. As the dominant benthic 

organism, Diporeia spp. had an ecological efficiency of 21 % and provided an effective 

means for benthic energy to re-enter the food web (Fitzgerald and Gardner, 1993). 

Nutrient cycling was further supported by sediment resuspension during the winter-spring 

mixing period (Eadie et al., 1984) which was facilitated in part by the presence of a 

benthic nepheloid layer during stratification (Chambers and Eadie, 1981). With the recent 

disappearance of Diporeia spp. (Nalepa et al., 2009) and mussel filtering depleting 

particle concentrations in the hypolimnion, it is reasonable to expect that there have been 

significant changes in internal P cycling. For example, recent studies near Milwaukee, 

WI suggest that dreissenid P excretion is 5 times greater than riverine input to the 

nearshore zone within the Milwaukee region, likely contributing to the rapid growth of 

the nuisance algae Cladophora on coastal rocky substrate (Bootsma, 2009). Recent 

studies suggest that quagga mussels in deeper parts of the lake may also play a significant 

role in carbon and nutrient dynamics (Vanderploeg et al., 2010). However, there have 

been no attempts to directly measure grazing and nutrient recycling by the profunda 

quagga mussel community. 

3.2 Purpose of study 
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The purpose of this study is to place profunda quagga mussel grazing, excretion, and 

egestion in context of the Lake Michigan P cycle. Specific questions addressed include: 

1) Do these mussels have the capacity to permanently remove nutrients from the system? 

Evaluating offshore nutrient fluxes and determining the fate of mussel egestion, or 

biodeposits, provides insight into the extent of dreissenid nutrient sequestration. If 

biodeposits (feces + pseudofeces) remains sequestered in the sediment, then mussel 

nutrient egestion may accelerate P removal, thereby maintaining low concentrations of 

phosphorus in the water column. However, if egested material is re-mineralized, then 

mussel grazing may result in no net loss of P from the water column. 2) What is the fate 

of dissolved P excreted by mussels? Does it return to the water column, and if so, does it 

remain within the hypolimnion? Or is it sequestered by microbial or geochemical 

processes, such as apatite precipitation (Brooks and Edgington, 1994), within the 

sediment? 3) How significant is mussel grazing and phosphorus recycling relative to 

other phosphorus pathways in Lake Michigan?  Placing profunda quagga mussel nutrient 

cycling in a whole-lake context, by comparing mussel-mediated P fluxes with other 

processes, such phytoplankton production, passive sedimentation, and zooplankton 

grazing, provides insight into how these organisms may be altering ecosystem structure 

and function. Nutrient fluxes in the pre- (before 2000) and post-dreissenid (after 2000) 

offshore environment during summer stratification could reveal if profunda quagga 

mussels are significant factors in recent Lake Michigan trophic changes. 

3.3. Methods 

Incubation experiments are used to evaluate the mussel-water-sediment interface as well 

as the fate of mussel biodeposits (feces + pseudofeces). Sediment trap studies investigate 
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changes to passive sedimentation since Dreissena began grazing the water column and 

potentially altering Lake Michigan’s P cycle. Focusing on the stratified offshore, mussel 

P recycling is compared to other P fluxes, such as riverine input, passive sedimentation, 

primary production, and zooplankton grazing. Comparing changes in these fluxes 

between the pre- (before 2000) and post-dreissenid (after 2000) periods could indicate if 

mussels are the driving force behind reduced productivity.  

3.3.1 Sediment core incubations with live mussels 

In October 2013, sediment cores were retrieved at the 55 m station using a box core 

deployed from the R/V Neeskay. Water was siphoned from the top of the box core to be 

used as replacement water during experiments. Nine cores were manually retrieved from 

the box core using acid-washed liners, immediately placed on ice, and extruded to 

produce an overlying water volume of 0.385 L onshore, 2 to 3 hours after collection. 

After extrusion, specialized stirring caps equipped with syringe sampling ports and metal 

spinners were placed on top of the cores to create air-tight seals. The metal spinners spin 

at a slow speed to keep the overlaying water continually mixed without re-suspending 

sediment. All cores were incubated in a PERCIVAL Scientific Incubator at in situ 

temperature (2-7 °C) in the dark. 

After adjusting the overlying water volume, the cores were left undisturbed and 

any mussels present on top of the sediment were left intact to preserve the in situ mussel-

water-sediment interface. The eight cores had varying mussel biomass (Table 3). At the 

mid-point of the experiment (day 25), mussels were collected and counted from all cores 

to determine core mussel density (mussels m
-2

), and mussel tissue was lyophilized to 

determine core mussel dry tissue biomass (g m
-2

) using the October 2013 profunda 
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mussel length-weight relationship in Chapter 1 (DW=0.0035L
2.78

). Biomass estimates are 

representative of mussel tissue biomass at the time of core retrieval, since the mussels 

were not fed and likely lost mass during the experiment. In analyzing data, cores were 

classified into two groups based on mussel dry weight biomass (g m
-2

). The high mussel 

biomass group (Core 1-4) had biomass ≥ 42.6 g m
-2

 and the low mussel biomass group 

(Core 5-8) had biomass ≤ 31.6 g m
-2

. Due to the high density of mussels at the study site, 

no cores were obtained with zero mussels. 

An initial core water sample was taken ~1 hour after set up, after which sampling 

occurred at lengthening intervals (2, 4, 14, 20, 44, 68 hours…) up to 49 days. For each 

core water sample, 25 mL was drawn out from the sampling port with a 60 mL acid-

washed plastic syringe. After the core sampling, 25 mL of replacement water (water 

siphoned from the top of the box core) was slowly pushed into the core from a separate 

port to re-establish core volume. The dilution of core water dissolved P concentrations 

with replacement water was negligible (≤ 0.03 µmol L
-1

) and did not alter the trend of the 

core soluble P concentrations. The 25 mL sample was immediately filtered using a 

syringe filter (ashed, 0.45 µm Whatman GF/F) and transferred to a 20 mL acid-washed 

scintillation vial. On day 40 of the experiment, microprofiles of dissolved oxygen (DO) 

were conducted at 0.8 mm increments using a NeoFox Sport mico-optode system to 

examine oxygen conditions within the sediment core. At the end of the experiment (day 

49), cores were extruded, sliced at 2 mm intervals and weighed. For two cores (one with 

a high mussel biomass and the other with a low mussel biomass), each slice was 

lyophilized and weighed for a dry weight. Particulate P analysis of core slices were also 

conducted using the method mentioned previously. The core slices were not dated. 
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3.3.2 Chamber incubations with mussel biodeposits 

Incubations in May 2014 were used to determine if dreissenid feces and pseudofeces 

(biodeposits) act as a nutrient sink or source. Ponar grabs were used to collect profunda 

quagga mussels at the 55 m site, and a gravity core was used to collect 6 sediment cores. 

Eight liters of lake water was collected from the near-bottom using a 5 L Niskin bottle 

and placed on ice. The mussels were placed in unfiltered lake water in the dark at in situ 

temperature until cleaning, and all cores were covered and placed on ice until the 

experimental set-up was complete. All mussels present in the sediment cores were 

immediately extracted and discarded using acid-washed forceps. 

Within 2 hours of collection, approximately 200 mussels of varying lengths (10-

25 mm) were gently scrubbed with an abrasive cloth and rinsed to remove algae, 

microbes, sediment, and particulate detritus from their shells. After cleaning, the mussels 

were placed in 2 L acid-washed polyethylene containers with filtered later water in the 

fridge at in situ temperature and allowed to egest for ~24 hours. Egested material was 

visible after 24 hour and the biodeposits were condensed to 100 mL slurry using a 

separation funnel. 

Within 4 hours of collection, the 6 sediment cores were extruded to produce an 

overlying water volume of 1.8 L. Ten acid-washed, empty core liners were filled with 1.8 

L of unfiltered near-bottom lake water. The sediment cores and water cores, which are 

collectively called ‘chambers’, were divided into 3 treatments consisting of various 

conditions with 10 mL of added biodeposits and a set of controls (meaning no added 

biodeposits) for each treatment. The first treatment was unfiltered lake water, the second 

treatment was spiked unfiltered lake water with an initial concentration of 1 µmol L
-1

, 
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and the third treatment was extruded sediment cores. All chambers were placed in a dark 

walk-in freezer (4 °C), oxygen saturation was maintained with aeration stones placed 

half-way down the chambers, and chambers were lightly covered with aluminum foil to 

minimize contamination.    

All water samples were collected half-way down the chambers with a 30 cm acid-

washed polyethylene tube attached to a 60 mL acid-washed glass syringe. An initial 

sample (30 mL) was taken 1 hour after the treatments were administered and then every 2 

days for the duration of the experiment (26 days). Samples were immediately filtered 

with a syringe filter (ashed, 0.45 µm Whatman GF/F) and analyzed for dissolved 

phosphorus using the method described in Chapter 1. If any mussels were sighted in the 

cores at any point in the experiment, they were immediately removed with acid-washed 

forceps. After each sample was taken, the water volume height was recorded and taken 

into account when determining chamber incubation volumes.  

3.3.3 Sediment trap deployment 

Sediment traps 9.5 cm diameter and 76.2 cm long were deployed in triplicate at 18, 35, 

and 53 m. To each trap 5 ml of chloroform was added to preserve settling particles. Traps 

were deployed from June through July for 27 days, July through August for 36 days, and 

August through October for 57 days. Upon collection, overlaying water was siphoned off, 

after which contents were lyophilized and weighed to the nearest mg. Trap material was 

analyzed for particulate carbon, nitrogen and phosphorus using the methods described in 

Chapter 1. 

3.4 Results 

3.4.1 Incubation experiments 
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In sediment core incubations conducted with live profunda quagga mussels at in situ 

temperature (4-6 °C), soluble reactive phosphorus (SRP) concentrations increased over 

time (Figure 12). Mussels in the cores were monitored daily to ensure that they were 

actively filtering (Figure 13). In cores with high mussel biomass (Cores 1-4) SRP 

concentrations increased more rapidly than in cores with low mussel biomass (Cores 5-

8). The difference in SRP rates between the high and low mussel biomass cores was 

significant (paired Student t-test, p < 0.001). In the two cores with the lowest densities 

(Cores 7 and 8), SRP concentrations decreased while mussels were present.  
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Figure 12: SRP concentrations (µmol L
-1

) in incubated sediment cores with mussels (top) and mussels 

removed (bottom) identified by core number with biomass (g m
-2

) in parantheses and grouped into high 

mussel density (solid black symbols) and low mussel density (solid white symbols). The black arrow 

indicates mussel removal. 

  

Figure 13: Core incubation set-up with live mussels. 

 

At day 25, mussels were removed from the cores, after which the incubation and 

regular sampling continued (Figure 12). After mussel removal, SRP concentrations for 

Cores 1-4 no longer increased, while SRP continued to slowly increase in Cores 5-8. SRP 

rates for high mussel biomass and low mussel biomass cores are inversely related with 
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mussel presence (Table 3). During mussel incubation, low mussel biomass Cores 7 and 8 

had negative rates, but after mussel removal these rates became positive. High mussel 

biomass Cores 1-3 had positive rates while mussels were incubated, but these rates 

became negative after mussel removal.  

Table 3: Net SRP production rates (µmol L
-1

 h
-1

) for cores before and after mussels were removed. Mussel 

dry biomass (DW) was determined from length (L), using the relationship: DW=0.0035L
2.78

. 

  Mussels in 

Core 

 

Biomass 

g m
-2

 

With 

Mussels 

µmol L
-1

 h
-1

 

Mussels 

Removed 

µmol L
-1

 h
-1

 

High Core 1 83 51.3 0.0017 -0.0004 

Core 2 57 44.9 0.0035 -0.0014 

Core 3 33 44.4 0.0024 -0.001 

Core 4 57 42.6 0.0041 0.0002 

Low Core 5 33 31.6 0.0016 0.0011 

Core 6 10 10.7 0.001 0.001 

Core 7 21 7.9 -0.00001 0.0012 

Core 8 2 0.6 -0.0004 0.0013 

 

A comparison of SRP increase / decrease rate (µmol L
-1

 h
-1

) with mussel biomass 

(g m
-2

) indicates a positive relationship in the presence of mussels, and an inverse 

relationship after mussel removal (Figure 14). High biomass correlated with the highest 

SRP production rates during incubation and the lowest SRP production rates after mussel 

removal. After mussel removal, the mean SRP (±SD) concentration in high mussel 

biomass Cores 1-4 decreased from 2.24 ± 0.79 to 1.69 ± 1.35 µmol L
-1

, while the SRP 

concentration in low mussel biomass cores continued to increase after mussel removal.  
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Figure 14: SRP slopes (µmol L
-1

 h
-1

) with mussels and after mussel removal correlated with each individual 

core’s biomass (g m
-2

). 

 

Dissolved oxygen microprofiles in the sediment conducted on day 40 depicts 

decreasing oxygen concentrations with depth in all cores (Figure 15). Surficial sediments 

had different levels of anoxia, with low mussel biomass cores having higher oxygen 

concentrations than high mussel biomass cores. Anoxia occurs at shallower depths (< 7 

mm) in cores with higher mussel biomass (Cores 1-4). 
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Figure 15: Sediment microprofiles of dissolved oxgyen (µmol O2 L
-1

) for high mussel density Cores 1-4 (■) 

and low mussel density Cores 5-8 (○). 

 

In the experiments designed to determine whether biodeposits serve as a P sink or 

source, SRP concentrations decreased in all chambers, including controls. Mussel feces + 

pseudofeces were added to chambers with three different treatments: lake water, 

phosphate-spiked lake water, and sediment. Two chambers (a lake water replicate and a 

sediment replicate) showed signs of contamination and were not included in analyses. A 

small amount of the egestion was measured for P content, and 10 mL of biodeposit slurry 

has a particulate P concentration of 0.12 µmol L
-1

. This particulate P content is high 

relative to Lake Michigan water column particulate P, as well as to mussel egestion rates 
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(0.0007 to 0.0061 µmol mgDW
-1

 d
-1

). Although all chambers show decreases in soluble 

P, chambers treated with biodeposits had greater SRP declines than control chambers, 

indicating that the biodeposits serve as a net sink for SRP. The biodeposit uptake rate of 

SRP (BR) was determined as: 

 BR =[B]-[C]/ [Biodeposit PP]       

where  [B] = SRP uptake in chamber with biodeposits (µmol SRP) 

 [C] = SRP uptake in control (µmol SRP) 

 [Biodeposit PP] = PP concentration of Biodeposits (0.12 µmol L
-1

) 

Using the above calculations,, mussel egestion has the capacity to adsorb soluble P at a 

rate between 0.03 to 0.21 µmol SRP µmol biodeposit PP
-1

 d
-1

, with sediment chambers 

having much lower uptake rates than lake water and spiked lake water chambers (Figure 

16).  
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Figure 16: Change of SRP (µmol SRP h
-1

) in chambers with added biodeposits in lake water (A), 

biodeposits in phosphate-spiked lake water (B), and biodeposits in sediment cores (C).  

 

3.4.2 Offshore nutrient fluxes versus mussel grazing 
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Figure 17: Mean (±SD) P (white) and C (black) flux rates (µmol m
-2

d 
-1

) for the 3 sediment trap depths (18 

m, 35 m, 53 m) inclusive of all deployment periods spanning from June-October 2013 at the 55 m station 

with mean (±SD) seston sedimentation rates above (g m
-2

d 
-1

). 

 

Sediment traps were deployed at 3 depths (18 m, 35 m, 53 m) from June to October 2013, 

and mean (±SD) flux rates for total seston (g m
-2

 d
-1

), C (µmol m
-2

 d
-1

), and P (µmol m
-2

 

d
-1

) were calculated for each depth (Figure 17). The epilimnetic trap (18 m) and trap 

located near the thermocline (35 m) had comparable flux rates that were double the rate 

of the bottom trap (53 m). The C : P ratio of sediment trap material was ~390 : 1, with no 

significant difference between depths. In Figure 18, total seston flux rates (g m
-2

 d
-1

) from 

June-October 2013 at the 55 m station are compared to sediment trap studies conducted 

from June-November 1980 at a 140 m station in the southern basin (Meyers and Eadie, 

1993). In 1980, sedimentation was inversely related to depth, with increasing 

sedimentation occurring at deeper depths, while in 2013 higher sedimentation occurs < 

35 m. 
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Figure 18: Comparison of mean  (±SD) sedimentation rates (g m
-2

d
-1

)  for June-October 2013 at the 55 m 

station  to sedimentation measured from June-November 1980 at a 140 m station (Meyers and Eadie, 

1993). 

 

The mean (±SD) areal sedimentation rates for total seston, C, and P were 

calculated for each of the three deployment periods for the bottom (53 m) trap at the 55 m 

station, as measurements at this depth represent conditions in closest proximity to the 

mussel bed (Figure 19). C and P sedimentation rates increased through the summer, with 

August through October having the highest rates of C (12418.73 ± 567.52 µmol m
-2

 d
-1

) 

and P (27.85 ± 0.94 µmol m
-2

 d
-1

) sedimentation (Figure 21). The mean rate of P 

sedimentation during late summer / early fall was 2.3 times greater and C was 2.9 times 

greater than early / mid-summer measurements.  

P sedimentation rates were compared with mussel P excretion + egestion rates in 

order to estimate the proportion of settling material that may be grazed by mussels. As 

stated in Chapter 1, the assumption is that grazing is approximately equal to the sum of 
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excretion + egestion. This will result in a conservative estimate of grazing, as it does not 

account for assimilation into mussel tissue and shell. Combined mussel P excretion + 

egestion is 5 to 8 times greater than the measured passive P sedimentation rates, 

suggesting that mussels are effectively consuming all settling matter in the offshore 

(Figure 20).  

 

Figure 19: Mean (±SD) sedimentation rates of P (white) and C (dark gray) (µmol m
-2

 d
-1

) at 53 m for three 

deployments in the 2013 summer (June 19-July 16, July 16-August 21, August 21-October 17) with areal 

seston sedimentation rates above each column (g m
-2 

d
-1

). 
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Figure 20: Mean (±SD) P sedimentation rate (µmol P m
-2

 d
-1

; white) at the 53 m sediment trap compared to 

mean (±SD) profunda mussel P excretion + egestion rates (µmol P m
-2

 d
-1

; black). 

 

3.4.3 Changes in water column P concentrations during stratification 

If dreissenids create a nutrient shunt to the benthos, this drawdown should be reflected in 

pelagic concentrations. Using water column P profiles from Chapter 1, the total mass of P 

(TDP + PP) for the entire 55 m water column was calculated for 2013. Pelagic total P in 

the spring isothermal mixing period (April 29) to mid-stratification (August 21) increases 

by 3.1 mol m
-2 

(Figure 21). The increase in the mass of total P in August was due 

primarily to dissolved P, which increased by 2.5 mol m
-2

, while particulate P only 

increased by 0.6 mol m
-2

. Proportions of dissolved and particulate P remained relatively 

similar throughout the stratified season, with dissolved P constituting 50-70 % and 

particulate P 30-50 % of total P. Although particulate P profiles reflect mussel grazing in 

the lower portion of the hypolimnion (see Chapter 1 Figure 2), this grazing does not 
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appear to result in a net decrease in total water column P mass during the stratified 

period.  

 

 
 

Figure 21: Change in total P mass (mol m
-2

) partitioned into TDP and PP from April 29 through August 21 

2013 for the entire water column at the 55 m station.   
 

3.5 Discussion 
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site (55 m offshore from Milwaukee, WI), an experimental control core containing no 

mussels could not be obtained. The lack of a control makes it difficult to separate the 

influence of microbes, bacteria, and other organisms inhabiting the sediment from 

profunda quagga mussels. Using mass specific mussel excretion rates and mean mussel 
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these excretion rates to core biomass and area, the expected areal excretion rate for the 

cores similar in biomass to the 55 m site is 50-70 µmol SRP m
-2 

d
-1

. This suggests that 

mussels are likely the main factor in influencing changes to SRP concentrations in core 

incubations.   

After mussel removal, the mean SRP concentrations from the high mussel 

biomass Cores 1-4 stop increasing while the mean from low mussel biomass Cores 5-8 

continue to gradually increase. As expected, cores with higher mussel biomass had higher 

SRP production rates than cores with lower mussel biomass. As demonstrated in Chapter 

1, profunda quagga mussels < 8 mm excrete SRP at a much higher mass normalized rate 

than mussels ≥ 8 mm, similar to findings of other studies (Naddafi and Pettersson, 2008). 

When examining the size distribution in each of the cores, mussels < 8 mm comprised a 

similar percentage (37-47 %), and thus size distribution was not a major factor in 

differences in core SRP concentrations. Although core volume was re-established after 

sampling by injecting unfiltered lake water to re-establish the volume, the mussels were 

not fed during the incubation and were likely starved. Despite a starvation state, 

Dreissena continued to excrete SRP over a period of 25 days. It has been thought that 

quagga mussels are able to depress their metabolic rates at cold temperatures (≤ 5 ºC) 

without a large impact on their reproductive abilities (Chase and McMahon, 1995; 

McMahon, 1996). These core experiments support these assumptions that quagga 

mussels can likely survive in a starved state for an extended period. In the absence of 

mussels, it is possible that the sediment and overlaying water begin to regain chemical 

equilibrium, especially in high mussel biomass cores with high mussel excretion.. 

3.5.2 Fate of egested material  
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Dreissenid excretion and egestion is thought to be a major source of nutrient regeneration 

in areas where mussels are abundant in the Great Lakes (Arnott and Vanni, 1996; Bunnell 

et al., 2009; Heath et al., 1995). However, as mentioned in Chapter 1, there has been 

almost no research to measure dreissenid egestion rates and determine if biodeposits are a 

nutrient source or sink. The profunda mussel excretion and egestion rates presented in 

Chapter 1 indicate that egestion rates are comparable to excretion rates. If this egestion 

remain sequestered in the sediment, it is possible it represents a net P loss from the 

system and could contribute to an overall decrease in lake productivity. Biodeposits are 

the least researched component of the mussel P cycle, and understanding their fate could 

be important in understanding declining total P concentrations in Lake Michigan (Mida et 

al., 2010). 

In the experiments to quantify phosphate release / uptake by mussel biodeposits, 

declining phosphates concentrations in control chambers as well as treated chambers 

could indicate a flaw in the experimental set-up, possibly due to the adsorption of P onto 

chamber walls (Holdren and Armstrong, 1980). However, chambers with biodeposits had 

higher rates of phosphate decline than control cores, suggesting that mussel biodeposits 

were taking up phosphate. A biodeposit P uptake rate (BR) demonstrated that feces and 

pseudofeces in sediment cores, which are most representative of in situ conditions, have 

the potential uptake rate 0.03 µmol SRP µmol biodeposit PP
-1

 d
-1

. The uptake rates of 

lake water and spiked lake water cores were higher than sediment cores, suggesting that 

the presence of sediment may buffer the uptake rate of soluble P by feces and 

pseudofeces. Biodeposits contain organic material that may promote the growth of 

bacteria. The C : P ratio of mussel biodeposits is likely high, reflecting that of Lake 
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Michigan phytoplankton that serve as the main food source for mussels. This high C : P 

ratio, and the relatively high P requirements of bacteria (Kirchman, 1994) could result in 

a P demand by bacteria that may be met through the assimilation of dissolved P. When in 

contact with the sediment, the P required to support bacterial growth on biodeposits may 

come from sediment pore water rather than the overlying water column, which would 

explain the apparent lower rates of uptake in chambers with sediment. At least in the 

short-term, mussel biodeposits seem to act as a nutrient sink. 

P flux between the sediment and water  can be regulated by chemical equilibrium 

between soluble nutrients in the overlaying water column and the mobilization of 

sediment bound P from reduced ferric oxides (Bostroem, 1981; Mortimer, 1941; Wetzel, 

2001) as well as apatite precipitation (Brooks and Edgington, 1994). Mussels could affect 

nutrient concentrations by lying directly on the sediment and excreting at rates too high 

for equilibrium. After mussel removal, the decrease in SRP concentrations in high mussel 

biomass chambers suggests the recovery of this equilibrium. These chamber incubations 

demonstrate how mussels alter soluble nutrient concentrations; however, these impacts 

may not be permanent. Although SRP concentrations in sediment cores with live mussels 

reached levels higher (1.5 µmol L
-1

) than in chambers with only biodeposits (< 1 µmol L
-

1
), in each experiment the soluble nutrients appeared to reach a steady-state. More 

research needs to investigate how mussels affect the sediment-water interface and if a 

nutrient equilibrium re-establishes itself after mussel removal. 

3.5.3 Mussel grazing impact in the offshore 

Sediment trap studies are invaluable in understanding the origin and amount of 

settling organic matter reaching the benthos. In the 1970s and 1980s, such studies 
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evaluated sedimentation rates in the offshore regions of Lake Michigan (Chambers and 

Eadie, 1981; Eadie et al., 1984; Meyers and Eadie, 1993). A comparison of sedimentation 

rates in the pre- versus post-dreissenid periods reveals stark differences in the flux rates 

of particles, carbon, and phosphorus. Before mussels expanded to deeper depths, the 

highest particle fluxes were seen in the bottom 10 m, as profiles depict an exponential 

increase in particle flux in the near the bottom with a strong presence of a flocculent layer 

(Eadie et al., 1984). Sediment traps at 35 m in 1978 revealed a P sedimentation rate of 

25.6 µmol m
-2

 d
-1

, with higher rates in near-bottom traps 
 
(Eadie et al., 1984)

 
compared to 

a 2013 sedimentation rate at 35 m of 54.5 ± 36 µmol P m
-2

 d
-1

 and a near-bottom rate of 

19.4 ± 7.1 µmol m
-2

 d
-1

 . The sediment traps from 2013 depict an inverse trend with 

depth, as particle, carbon, and phosphorus fluxes in the bottom trap are ½ of the upper 

water column fluxes. The flocculent layer above the lake bottom measured in the pre-

dreissenid period is no longer measurable or even visible with underwater camera 

imagery. Time scales of mussel filtration and dissolved P excretion are shorter than those 

of mixing within this layer, resulting in a particulate P decline near the lake bottom and 

the disappearance of the benthic nepheloid layer. Recent measurements of near-bottom 

current structure at the 55 m station suggest only the existence of a weakly stratified 

benthic boundary layer ranging from < 2.6 m to 10 m (Cary Troy, personal 

communication).  

Vertical mixing in the hypolimnion is likely a critical mechanism in food 

regulation to profunda quagga mussels in the weakly stratified benthic boundary layer. 

Based on P excretion + egestion rates, mussels grazing is up to 8 times greater than the 

passive P settling rates. This is a possibility if physical dynamics are replenishing the 
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food supply to the benthos for the musses. Otherwise dreissenid grazing would likely 

rapidly deplete particles above the mussel bed, and the filter feeders could have 

difficultly sustaining a stable population through the stratified season. These findings 

support previous estimates of Dreissena consuming 54 % of annual phytoplankton 

production and over 100 % of annual settled organic C in the offshore (Tyner et al. 2014, 

in review). In situ fluorescence and chlorophyll a profiles depict high chlorophyll a 

concentrations below the thermocline. Whether this is due to phytoplankton sinking out 

of the epilimnion, growing near the thermocline, or species with high chlorophyll a 

content is uncertain. Regardless, it represents a pool of C and P that is available to quagga 

mussels within the hypolimnion, and suggests that stratification may not strongly inhibit 

food supply to mussels. 

3.5.4 Oxygen profiles in sediments 

Nutrient equilibrium could also be influenced by oxygen concentrations at the sediment-

water interface. Oxygen conditions are critical in nutrient exchanges and largely 

regulated by the metabolism of benthic fauna, including microbes, bacteria, and other 

organisms. If the cores are air-tight, it is likely mussels would eventually respire all 

available oxygen and create anoxia. Anoxic conditions in the first few millimeters of the 

sediment could promote the mobilization of P from reduced ferric oxides, as mentioned 

previously. Dissolved oxygen microprofiles of sediment cores revealed that cores with 

higher mussel biomass were anoxic at shallower depths (< 7 mm), and it is possible that 

the high SRP concentrations in cores with higher mussel biomass were influenced by the 

release of P from inorganic compounds under anoxic sediment. Passage of material 

through the anoxic mussel gut could also further promote the release of P bound in 
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sediment (Hecky et al., 2004), as mussels lying directly on sediment (versus suspended in 

the water column) were found to have a greater SRP release than could not be accounted 

for in food consumption (Turner, 2010). Lake Superior cores collected in 1985 and 1986 

at depths ranging from 19 to 276 m had oxic conditions up to 25 mm (Carlton et al., 

1989). These Lake Superior cores were absent of mussels, and the anoxic conditions at 

shallower depths in Lake Michigan sediment cores indicates how mussel presence affects 

sediment chemistry in terms of both nutrients and oxygen. 

 Dissolved oxygen microprofiles in mussel-impacted, deep-water sediments have 

never before been closely examined and could reveal indirect effects of invasive 

dreissenids. Decreased oxygen concentrations directly above mussel beds and in the first 

few millimeters of sediment not only affect nutrient concentrations and chemical 

equilibrium, but also the habitability of the profundal benthos. Benthic amphipods such 

as Diporeia spp. survive in deep-water surficial sediments, and populations have rapidly 

declined since the Dreissena invasion and expansion (Nalepa et al., 2009). Proposed 

reasons for their disappearance include food competition, as mussels filter out settling 

particles that would normally reach the detritivores, as well as pathogen / toxin transport 

in mussel egestion (Dermott and Kerec, 1997; Watkins et al., 2007). These microprofiles 

suggest that Diporeia spp. may also have been affected by poor oxygen conditions within 

the sediment.  

3.5.5 Mussel impact on P fluxes in Lake Michigan  

A conceptual diagram of P fluxes was created to compare pre-dreissenid (1980-2000) and 

post-dreissenid (2000-present) P dynamics in the southern basin of Lake Michigan 

(Figure 22), assuming a stratified water column at a 55 m depth. Published carbon pools 
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and fluxes were converted to phosphorus using estimated C : P ratios. For > 100 m water 

column in June-September from 1995-2000 the mean ratio was ~150 ; 1, but by 2007-

2011 the mean ratio had increased to ~280 : 1 (Pothoven and Fahnenstiel, 2013). Based 

on these estimates, any carbon fluxes in the pre-dreissenid period were converted to 

phosphorus with a ratio range of 150-200 : 1, and any post-dreissenid carbon fluxes were 

converted using a ratio range of 250-300 : 1. River loading P estimates were calculated 

using the area of the southern basin (1.9 x 10
10

 m
2
) and estimates from the 1980-1995 and 

1995-2000 by Mida et al. (2010). A range of primary productivity was estimated for Lake 

Michigan’s southern basin during mid- and late-stratification from 1983-1987 and 2007-

2008 (Fahnenstiel et al., 2010). Passive sedimentation rates for the pre-dreissenid period 

were calculated from the total organic carbon (TOC) flux in 1980 (Meyers and Eadie, 

1993), and the P burial estimate was derived from measurements in 1983-1987 (Shafer 

and Armstrong, 1994). The dissolved P flux back into the water column for the pre-

dreissenid period was considered the difference between the river loading and burial rate. 

For 2000-present, the P sedimentation was calculated from 2013 sediment trap data 

described above, and the P burial is unknown.  

Zooplankton grazing rates from pre- and post-invasion were calculated using 

epilimnetic zooplankton clearance rates (Scavia and Fahnenstiel, 1987), total zooplankton 

biomass (Vanderploeg et al., 2012), and mean water column particulate P concentrations 

(Pothoven and Fahnenstiel, 2013). The Diporeia spp. nutrient uptake rates are based on 

estimates made in 1990s during the spring diatom bloom (78 days) (Fitzgerald and 

Gardner, 1993). No grazing rates for Diporeia spp. have been calculated since Dreissena 

expansion, and large declines in Diporeia populations likely make their current impact on 
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P cycling negligible. For profunda quagga mussel P fluxes, excretion and egestion rates 

were calculated as areal rates based on mean mussel biomass, size distribution, and mass 

normalized nutrient excretion and egestion rates (Chapter 1). Mussel assimilation was 

assumed to be 10 % of the grazed material (excretion +  egestion) (Stoeckmann and 

Garton, 1997), and ‘sequestration’, the accelerated sedimentation due to mussel grazing, 

was determined as mussel excretion + egestion + assimilation.  
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Figure 22: Conceptual diagram of pre- (top) versus post-dreissenid (bottom) P fluxes (µmol m
-2 

d
-1

). 

 

Comparisons of the two conceptual diagrams (Figure 22) shows shifts in P fluxes 

and changes in Lake Michigan’s offshore productivity since the arrival of dreissenids. 

Offshore high mussel densities result in more P cycling in the benthos, as mussel grazing 

utilizes vertical mixing and the advection of particles to the lake bottom to create a P 

reservoir. Before extensive dreissenid populations carpeted the lake bottom, Diporeia 

spp. were the dominant benthic organism in deep water, consuming nearly 60 % of 

settling C during the spring diatom bloom (Fitzgerald and Gardner, 1993). But since 

2007, the deep-water amphipods have rarely been found at depths < 90 m (Nalepa et al., 

2009), and dreissenids are the dominant organism in benthic energy flow. Whereas 

Diporeia spp. were nutrient conduits, dreissenids appear to decrease the turnover of P and 
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increase sequestration. Nutrient recycling rates are altered, and a P reservoir on the lake 

bottom has appeared that did not exist previously.  

Primary productivity and zooplankton grazing during the stratified period are both 

estimated to have been up to 1.5 to 2 times greater before Dreissena dominated the 

system. An increase in P-limitation, as suggested by an increase of seston C : P ratios 

from 150 : 1 to 300 : 1 has resulted in a less productive pelagic zone. Decreases in 

zooplankton P grazing are due to decreases in whole water column particulate P 

concentrations, not zooplankton biomass, implying slower zooplankton growth rates. 

Mean particulate P decreased from 3.5 to 1.8 µmol L
-1 

from 1995-2000 to 2007-2011 

(Pothoven and Fahnenstiel, 2013), while zooplankton biomass only decreased from 0.027 

to 0.020 mgDW L
-1 

(Vanderploeg et al., 2012). Although pelagic productivity has 

decreased during the stratified period since the dreissenid invasion, the decreases were 

not as significant as might be expected, given mussel nutrient recycling and grazing rates. 

Passive sedimentation rates are comparable for both periods, but the gross rate of 

P flux to the benthos post mussel invasion has increased due to mussel grazing. Before 

2000, the burial rate was 1/2 to 3/4 of river loading to the southern basin, based on the P 

content of surficial sediments at a 160 m station dated with 
210

Pb (Shafer and Armstrong, 

1994). Current P burial estimates are unknown, but P burial is likely no greater than pre-

dreissenid calculation since total P loading to the lake has continually declined since the 

1980s (Mida et al., 2010) and P profiles in undated sediment cores do not depict any 

increases in P in the top few millimeters of sediment (Appendix A).  

Based on the conceptual diagrams presented here, the primary effect of profunda 

quagga mussels appears to be an accelerated P cycling rate in the benthos. The other P 
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fluxes (primary productivity, zooplankton grazing, passive sedimentation) have decreased 

only slightly in the past decade, as mussel impact on the stratified period seems to be 

limited. This correlates with previous observations of Lake Michigan’s stratified period 

that found no significant change in primary production since the dreissenid invasion 

(Fahnenstiel et al., 2010).  It is likely that mussel filtering activity during the spring 

isothermal mixing period creates low productivity conditions that are then maintained by 

the mussels through the stratification. In order to better understand the long-term impact 

of mussel filtering, it would be necessary to monitor water column nutrient 

concentrations year-round over the course of several more years and determine the extent 

of mussel presence creating a reservoir that slows nutrient turn-over.  

3.5.6 Implications for dissolved and particulate P concentrations  

Dreissena invasion is thought to have shifted nutrient distribution in the water column. 

Profiles from the late 1970s depicted pelagic SRP concentrations between 0.06-0.10 

µmol L
-1

, pelagic PP comprising 1/3 to 1/2 of total phosphorus in the water column, and 

high concentrations of both dissolved and particulate P in the clearly defined nepheloid 

layer (Eadie et al., 1984). In comparison to 2013 water column profiles, mussel grazing 

has possibly increased the dissolved : particulate ratio of phosphorus in the pelagic zone.  

The SRP concentrations in the lower hypolimnion are 1/3 of historical concentrations 

(0.02-0.04 µmol L
-1

) and PP constitutes only 1/4 of total phosphorus. Water column 

profiles pre- and post-mussel invasion indicate a general decrease of P in offshore waters 

(Mida et al., 2010; Pothoven and Fahnenstiel, 2013); however the summer 2013 water 

column nutrient concentrations show relatively stable PP and even increasing TDP. Even 

though particulate P concentrations in the hypolimnion have declined since the mussel 
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invasion, but the mass of particulate P does not change substantially during the 

stratification, likely due a low initial concentration at the beginning of summer caused by 

mussel grazing during the spring isothermal mixing period. The increases in P mass at the 

55 m site are due to the accumulation of the dissolved P, and since mussel excretion 

accounts for 40 % of recycled P by mussels, if this portion is mixed back into the water 

column it could account for the gain in P mass. 

For the stratified period, an estimated ‘accumulation’ of mussel excretion 

compared to the increase in hypolimnetic dissolved P would indicate if mussel excretion 

can account for the P mass increase. For the 55 m high mussel density site, an areal 

mussel excretion rate of 109 µmol TDP m
-2 

d
-1

 was calculated using Chapter 1 profunda 

quagga mussel biomass and excretion rates. Applying this areal excretion rate to a 30 m 

hypolimnion and a stratified period of 100 days, a net hypolimnetic ‘accumulation’ of 

TDP would be 0.36 µmol L
-1

, assuming no mixing between the hypolimnion and 

epilimnion. Based on the water column dissolved P profiles from April 29 through 

August 16 in Chapter 1, TDP in the hypolimnion increased by only 0.05 µmol L
-1

. With 

no vertical or horizontal mixing, areal mussel TDP excretion results in concentrations 7 

times greater than the measured increase in the hypolimnion at the 55 m station. 

However, this calculation is for a high mussel density site and does not take into account 

nearshore-offshore exchange, dilution due to a large lake volume, or lower mussel 

densities at deeper sites. Nalepa et al. (2010) estimates that ≥ 65 % of mussels are ≤ 5 mm 

at deeper depths ( > 50 m), and Chapter 1 histograms supports these estimates. Using 

mussel density and size distribution for mussels > 50 m (Nalepa et al., 2010) and Chapter 

1 mussel areal excretion rates, a revised areal TDP excretion rate for the whole lake 
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ranges between 7.34 to 67.9 µmol L
-1

. This range of revised areal excretion applied to a 

mean whole-lake hypolimnetic depth of 80 m (Bootsma et al., 2003) and a stratified 

period of 100 days would result in an expected ‘accumulation’ between 0.01 to 0.08 µmol 

L
-1

, assuming no mixing. The soluble P increase in the hypolimnion (0.05 µmol L
-1

) falls 

within this range of expected mussel excretion ‘accumulation’, and suggests that mussel 

excretion may play a role in maintaining P mass during the stratified season. The 55 m 

site is an example of a high mussel density site, and profunda quagga mussel impact on 

the whole lake is less pronounced due to mixing and dilution, which distributes mussel 

excretion throughout the lake.  

Besides mussel excretion, P from river loading may keep the total P mass in the 

water column constant. Based on river loading estimates from 1990-2008 of 1500-2000 

MT/year (Mida et al., 2010) and the southern basin area of 1.9 X 10
10

 m
2
 (Tyner, 2013), 

P loading to the southern basin is 7.3-9 µmol m
-2

d
-1

. For the stratified period (~100 d) at a 

55 m depth, this would be up to a 0.02 µmol L
-1

 increase. Mussel excretion and riverine 

input in the southern basin could contribute 0.03 to 0.1 µmol L
-1

 during the stratified 

period. There is no significant decrease in P mass during the stratified period because 

diluted mussel excretion and external inputs stabilize any loss from the system. 

Mussels are efficient nutrient cyclers, and yet observing the lake as a whole 

during the stratified period, profunda mussel filtering does not cause a decrease in water 

column P mass. Despite extensive populations, the lower metabolic activity of these 

mussels combined with low P concentrations at the onset of stratification appears to 

lessen their impact. Considering that greater decreases in primary productivity are seen 

during the spring isothermal mixing period (~80 %) in comparison to stratified periods 
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(~20 %) (Fahnenstiel et al., 2010), the immediate impact of mussel presence is during 

mixing when the filter feeders have better access to the more productive regions of the 

water column. For the stratified period, the most noticeable impact of the profunda morph 

is the increase of P cycling in the benthos and creation of a P reservoir slowing the 

turnover of nutrients. 

4. Conclusion 

Profunda quagga mussels have relatively low and constant excretion and egestion rates 

due to cold temperatures and resultant decreased metabolic rates in offshore Lake 

Michigan. In the past, studies of Dreissena have focused primarily on excretion, but this 

research indicates that egestion accounts for ~40 % of grazed material for profunda 

quagga mussels and needs to be evaluated when measuring mussel nutrient recycling 

rates. The profunda morph has double the densities of the nearshore phenotype, but only 

1/3 the biomass due to a lower length : weight ratio. Profunda quagga mussels in offshore 

Lake Michigan likely have a lower impact on P cycling than their nearshore counterparts 

per unit area due to lower excretion and egestion rates.  

Mussel grazing is greater than passive sedimentation due to vertical mixing 

increasing the advection of particles to the benthos. Mixing is likely a key mechanism in 

food regulation to profunda quagga mussels during stratification. This research supports 

the hypothesis that offshore mussels have altered P cycling and affected phytoplankton 

structure (Fahnenstiel et al., 2010) and nutrient concentrations (Mida et al., 2010). 

Decreases in production during summer / fall are not as significant as alterations during 

the winter / spring (Fahnenstiel et al., 2010) because mussel grazing during the spring 

isothermal mixing period creates a lowered level of productivity that mussels maintain 
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during stratification. Looking at a single stratified season, there is no net loss of either 

dissolved or particulate P due to mussel excretion and riverine input stabilizing P mass in 

the water column. However, with profunda quagga mussels grazing all settling matter 

delivered to the benthos (Tyner et al., 2014, in review) and could potentially sequester P 

over the long term, which is likely responsible for the long-term decrease in pelagic total 

P concentrations in the lake. Based on in situ measurements, experiments, and 

comparison to other P fluxes, we suggest that mussels have created a nutrient reservoir in 

the benthos that decreases the turnover time of nutrients in the lake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

75 

 

 

5. References 

Ackerman, J.D., 1999. Effect of velocity on the filter feeding of dreissenid mussels 

(Dreissena polymorpha and Dreissena bugensis): implications for trophic dynamics. 

Can. J. Fish. Aquat. Sci. 56, 1551–1561. doi:10.1139/cjfas-56-9-1551 

Ackerman, J.D., Vn, C., Loewen, M.R., Hamblin, P.F., 2001. Benthic – Pelagic coupling 

over a zebra mussel reef in western Lake Erie. Limnol. Oceanogr. 46, 892–904. 

Arnott, D.L., Vanni, M.J., 1996. Nitrogen and phosphorus recycling by the zebra mussel 

(Dreissena polymorpha) in the western basin of Lake Erie. Can. J. Fish. Aquat. Sci. 

53, 646–659. 

Baldwin, B.S., Mayer, M.S., Dayton, J., Pau, N., Mendilla, J., Sullivan, M., Moore, A., 

Ma, A., Mills, E.L., 2002. Comparative growth and feeding in zebra and quagga 

mussels ( Dreissena polymorpha and Dreissena bugensis ): implications for North 

American lakes. Can. J. Fish. Aquat. Sci. 59, 680–694. doi:10.1139/F02-043 

Berg, D.J., Fisher, S.W., Landrum, P.F., 1996. Clearance and processing of algal particles 

by zebra mussels. J. Great Lakes Res. 22, 779–788. 

Bootsma, H.A., 2009. Causes , consequences and management of nuisance Cladophora. 

Milwaukee, WI. 

Bootsma, H.A., Hecky, R.E., Ave, E.G., 2003. A comparative introduction to the biology 

and limnology of the African Great Lakes. J. Great Lakes Res. 29, 3–18. 

Bootsma, H.A., Liao, Q., 2014. Nutrient cycling by dreissenid mussels: controlling 

factors and ecosystem responses, in: Nalepa, T.F., Schloesser, D.W. (Eds.), Quagga 

and Zebra Mussels: Biology, Impacts, and Control. CRC Press, Boca Raton, FL, pp. 

555–574. 

Bootsma, H.A., Waples, J.T., Liao, Q., 2012. Identifying major phosphorus pathways in 

the Lake Michigan nearshore zone. Milwaukee. 

Bostroem, B., 1981. Factors controlling the seasonal variation of nitrate in Lake Erken. 

Int. Rev. ges. Hydrobiol 66, 821–835. 

Brooks, A.S., Edgington, D.N., 1994. Biochemical control of phosphorus cycling and 

primary production in Lake Michigan. Limnol. Oceanogr. 39, 961–968. 

Bunnell, D.B., Madenjian, C.P., Holuszko, J.D., Adams, J. V., French, J.R.P., 2009. 

Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts 

on fish populations. J. Great Lakes Res. 35, 74–80. doi:10.1016/j.jglr.2008.10.002 



www.manaraa.com

76 

 

 

Bunt, C.M., MacIsaac, H.J., Sprules, W.G., 1993. Pumping rates and projected filtering 

impacts of juvenile zebra mussels (Dreissena Polymorpha) in western Lake Erie. 

Can. J. Fish. Aquat. Sci. 50, 1017–1022. 

Carlton, R.G., Walker, G.S., Klug, M.J., Wetzel, R.G., 1989. Relative values of oxygen, 

nitrate, and sulfate to terminal microbial processes in the sediments of Lake 

Superior. J. Great Lakes Res. 15, 133–140. doi:10.1016/S0380-1330(89)71467-2 

Cha, Y., Stow, C. a, Nalepa, T.F., Reckhow, K.H., 2011. Do invasive mussels restrict 

offshore phosphorus transport in Lake Huron? Environ. Sci. Technol. 45, 7226–31. 

doi:10.1021/es2014715 

Chambers, R.L., Eadie, B.J., 1981. Nepheloid and suspended particulate matter in south-

eastern Lake Michigan*. Sedimentology 28, 439–447. 

Chapra, S.C., Dolan, D.M., 2012. Great Lakes total phosphorus revisited: 2. Mass 

balance modeling. J. Great Lakes Res. 38, 741–754. doi:10.1016/j.jglr.2012.10.002 

Chase, R., McMahon, R.F., 1995. Starvation tolerance of zebra mussels, Dreissena 

polymorpha, in: Fifth Internatinoal Zebra Mussel and Other Aquatic Nuisance 

Species Conference. Toronto, pp. 31–38. 

Claxton, W.T., Mackie, G.L., 1998. Seasonal and depth variations in gametogenesis and 

spawning of Dreissena polymorpha and Dreissena bugensis in eastern Lake Erie. 

Can. J. Fish. Aquat. Sci. 76, 2010–2019. 

Claxton, W.T., Wilson, A.B., Mackie, G.L., Elizabeth, G., 1998. A genetic and 

morphological comparison of shallow- and deep-water populations of the introduced 

dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276. 

Cloern, J.E., 1982. Does the benthos control phytoplankton biomass in the south San 

Francisco Bay? Mar. Ecol. Prog. Ser. 9, 191–202. 

Conroy, J.D., Edwards, W.J., Pontius, R. a., Kane, D.D., Zhang, H., Shea, J.F., Richey, 

J.N., Culver, D. a., 2005. Soluble nitrogen and phosphorus excretion of exotic 

freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation 

in western Lake Erie. Freshw. Biol. 50, 1146–1162. doi:10.1111/j.1365-

2427.2005.01392.x 

Demaster, D.J., 1981. The supply and accumulation in the marine environment. Geochim. 

Cosmochim. Acta 45, 1715–1732. 

Dermott, R., Kerec, D., 1997. Changes to the deepwater benthos of eastern Lake Erie 

since the invasion of Dreissena : 1979 – 1993. Can. J. Fish. Aquat. Sci. 54, 922–930. 



www.manaraa.com

77 

 

 

Dermott, R., Munawar, M., 1993. Invasion of Lake Erie offshore sediments by Dreissena 

and Its ecological implicaions. Can. J. Fish. Aquat. Sci. 50, 2298–2304. 

doi:10.1139/f93-254 

Diggins, T.P., 2001. A seasonal comparison of suspended sediment filtration by quagga 

(Dreissena bugensis) and zebra (D. polymorpha) mussels. J. Great Lakes Res. 27, 

457–466. doi:10.1016/S0380-1330(01)70660-0 

Eadie, B.J., Chambers, R.L., Gardner, W.S., Bell, G.L., 1984. Sediment trap studies in 

Lake Michigan: resuspension and chemical fluxes in the southern basin. J. Grea 10, 

307–321. 

Eadie, B.J., Schwab, D.J., Johengen, T.H., Lavrentyev, P.J., Miller, G.S., Holland, R.E., 

Leshkevich, G. a., Lansing, M.B., Morehead, N.R., Robbins, J. a., Hawley, N., 

Edgington, D.N., Van Hoof, P.L., 2002. Particle transport, nutrient cycling, and 

algal community structure associated with a major winter-wpring sediment 

tesuspension event in southern Lake Michigan. J. Great Lakes Res. 28, 324–337. 

doi:10.1016/S0380-1330(02)70588-1 

Fahnenstiel, G., Pothoven, S., Vanderploeg, H., Klarer, D., Nalepa, T., Scavia, D., 2010. 

Recent changes in primary production and phytoplankton in the offshore region of 

southeastern Lake Michigan. J. Great Lakes Res. 36, 20–29. 

doi:10.1016/j.jglr.2010.03.009 

Fanslow, D.L., Nalepa, T.F., Lang, G. a., 1995. Filtration tates of the zebra mussel 

(Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great 

Lakes Res. 21, 489–500. doi:10.1016/S0380-1330(95)71061-9 

Fitzgerald, S. a., Gardner, W.S., 1993. An algal carbon budget for pelagic-benthic 

coupling in Lake Michigan. Limnol. Oceanogr. 38, 547–560. 

doi:10.4319/lo.1993.38.3.0547 

Garton, D.W., McMahon, R.F., Stoeckmann, A., 2014. Limiting environmental factors 

and competitive interactions between zebra and quagga mussels in North America, 

in: Nalepa, T.F., Schloesser, D.W. (Eds.), Quagga and Zebra Mussels: Biology, 

Impacts, and Control. CRC Press, Boca Raton, FL, pp. 383–402. 

Healey, F.P., Hendzel, L.., 1979. Indicators of phosphorus and nitrogen deficiency in five 

algae in culture. J. Fish. Board Canada 36, 1364–1369. 

Heath, H.T., Fahnenstiel, G.L., Gardner, W.S., Cavaletto, J.F., Hwang, S., 1995. 

Ecosystem-level effects of zebra mussels (Dreissena polymorpha): An enclosure 

experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21, 501–506. 

Hecky, R.E., Smith, R.E.H., Barton, D.R., Guildford, S.J., Taylor, W.D., Charlton, M.., 

Howell, T., 2004. The nearshore phosphorus shunt: a consequence of ecosystem 



www.manaraa.com

78 

 

 

engineering by dreissenids in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 

61, 1285–1293. doi:10.1139/F04-065 

Higgins, S.N., Vander Zanden, M.J., 2010. What a difference a species makes: a meta-

analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol. Monogr. 80, 

179–196. 

Holdren, G.C., Armstrong, D.E., 1980. Factors affecting phosphorus release from intact 

lake sediment cores. Environ. Sci. Technol. 14, 2–7. 

Horgan, M.J., Mills, E.L., 1997. Clearance rates and filtering activity of zebra mussel 

(Dreissena polymorpha): implications for freshwater lakes. Can. J. Fish. Aquat. Sci. 

54, 249–255. doi:10.1139/cjfas-54-2-249 

Johannessen, T., Dahl, E., 1996. Declines in oxygen concentrations along the Norwegian 

Skagerrak coast , 1927-1993 : A signal of ecosystem changes due to eutrophication ? 

Limnol. Oceanogr. 41, 766–778. 

Johengen, T.H., Nalepa, T.F., Fahnenstiel, G.L., Goudy, G., 1995. Nutrient changes in 

Saginaw Bay , Lake Huron , after the establishment of the zebra mussel (Dreissena 

polymorpha). J. Great Lakes Res. 21, 449–464. 

Johengen, T.H., Vanderploeg, H.A., Liebig, J.R., 2014. Effects of algal composition, 

seston stoichiometry, and feeding rate on zebra mussel (Dreissena polymorpha) 

nutrient excretion in two Laurentian Great Lakes, in: Nalepa, T.F., Schloesser, D.W. 

(Eds.), Quagga and Zebra Mussels: Biology, Impacts, and Control. CRC Press, Boca 

Raton, FL, pp. 445–459. 

Jorgensen, C.B., Kiorboe, T., Mohlenberg, F., 1984. Cilliary and mucusnet filter feeder, 

with special reference to fluid mechanical characteristics. Mar. Ecol. Prog. Ser. 15, 

383–292. 

Kautsky, N., Evans, S., 1987. Role of biodeposition by Mytilus edulis in the circulation 

of matter and nutrients in a Baltic coastal ecosystem. Mar. Ecol. Prog. Ser. 38, 201–

212. 

Kemp, W., Boynton, W., Adolf, J., Boesch, D., Boicourt, W., Brush, G., Cornwell, J., 

Fisher, T., Glibert, P., Hagy, J., Harding, L., Houde, E., Kimmel, D., Miller, W., 

Newell, R., Roman, M., Smith, E., Stevenson, J., 2005. Eutrophication of 

Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 

303, 1–29. doi:10.3354/meps303001 

Kirchman, D.L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. 

Microb. Ecol. 28, 255–271. 



www.manaraa.com

79 

 

 

Kryger, J., Riisgard, H.U., 1988. Filtration rate capacities in 6 species of European 

freshwater bivalves. Oecologia 77, 34–38. 

Lei, J., Payne, B.S., Wang, S.Y., 1996. Filtration dynamics of the zebra mussel, 

Dreissena polymorpha. Can. J. Fish. Aquat. Sci. 53, 29–37. doi:10.1139/f95-164 

Madon, S.P., Schneider, D.W., Stoeckel, J. a, Sparks, R.E., 1998. Effects of inorganic 

sediment and food concentrations on energetic processes of the zebra mussel, 

Dreissena polymorpha : implications for growth in turbid rivers. Can. J. Fish. Aquat. 

Sci. 55, 401–413. doi:10.1139/f97-214 

McMahon, R.F., 1996. The physiological ecology of the zebra mussel, Dreissena 

polymorpha , in North America and Europe. Integr. Comp. Biol. 36, 339–363. 

doi:10.1093/icb/36.3.339 

Mellina, E., Rasmussen, J.B., Mills, E.L., 1995. Impact of zebra mussel (Dreissena 

polymorpha ) on phosphorus cycling and chlorophyll in lakes. Can. J. Fish. Aquat. 

Sci. 52, 2553–2573. 

Meyers, P.A., Eadie, B.J., 1993. Sources, degradation and recycling of organic matter 

associated with sinking particles in Lake Michigan. Org. Geochem. 20, 47–56. 

doi:10.1016/0146-6380(93)90080-U 

Mida, J.L., Scavia, D., Fahnenstiel, G.L., Pothoven, S. a., Vanderploeg, H. a., Dolan, 

D.M., 2010. Long-term and recent changes in southern Lake Michigan water quality 

with implications for present trophic status. J. Great Lakes Res. 36, 42–49. 

doi:10.1016/j.jglr.2010.03.010 

Mills, E.L., Chrisman, J.R., Baldwin, B.S., Owens, R.W., O’Gorman, R., Howell, T., 

1999. Changes in the dreissenid community in the Lower Great Lakes with 

emphasis on southern Lake Ontario. J. Great Lakes Res. 25, 187–197. 

Mortimer, C., 1941. The exchange of dissolved substances between mud and water in 

lakes (Parts I and II). J. Ecol. 29, 280–329. 

Morton, B., 1969. Studies on the biology of Dreissena polymorpha Pall. II. Correlation of 

the rhythums of the abbductor activity, feeding, digestion and excretion. Proc. 

Malcological Soc. London 38, 401–414. 

Naddafi, R., Eklöv, P., Pettersson, K., 2009. Stoichiometric constraints do not limit 

successful invaders: zebra mussels in Swedish lakes. PLoS One 4, e5345. 

doi:10.1371/journal.pone.0005345 

Naddafi, R., Pettersson, K., 2008. Effects of the zebra mussel , an exotic freshwater 

species , on seston stoichiometry. Limnol. Oceanogr. 53, 1973–1987. 



www.manaraa.com

80 

 

 

Nalepa, T.F., 1989. Estimates of macroinvertebrate biomass in Lake Michigan. J. Great 

Lakes Res. 15, 437–443. doi:10.1016/S0380-1330(89)71499-4 

Nalepa, T.F., Cavaletto, J.F., Ford, M., Gordon, W.M., Wimmer, M., 1993. Seasonal and 

annual variation in weight and biochemical content of the zebra mussel , Dreissena 

polymorpha , in Lake St . Clair. J. Great Lakes Res. 19, 541–552. 

Nalepa, T.F., Fanslow, D.L., Lang, G. a., 2009. Transformation of the offshore benthic 

community in Lake Michigan: recent shift from the native amphipod Diporeia spp. 

to the invasive mussel Dreissena rostriformis bugensis. Freshw. Biol. 54, 466–479. 

doi:10.1111/j.1365-2427.2008.02123.x 

Nalepa, T.F., Fanslow, D.L., Pothoven, S. a., 2010. Recent changes in density, biomass, 

recruitment, size structure, and nutritional state of Dreissena populations in southern 

Lake Michigan. J. Great Lakes Res. 36, 5–19. doi:10.1016/j.jglr.2010.03.013 

Newell, R.I.E., 1988. Ecological changes in Chesapeake Bay: Are they the result of 

overharvesting the American oyster, Crassostrea virginica? Underst. Estuary Adv. 

Chesap. Bay Res. Proc. a Conf. 29–31. 

Newell, R.I.E., Fisher, T.R., Holyoke, R.R., Cornwell, J.C., 2005. Influence of eastern 

oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA, in: The 

Comparative Roles of Suspension Feeders in Ecosystems. pp. 93–120. 

Ozersky, T., Malkin, S.Y., Barton, D.R., Hecky, R.E., 2009. Dreissenid phosphorus 

excretion can sustain C. glomerata growth along a portion of Lake Ontario shoreline. 

J. Great Lakes Res. 35, 321–328. doi:10.1016/j.jglr.2009.05.001 

Padilla, D.K., Adolph, S.C., Cottingham, K.L., Schneider, D.W., 1996. Predicting the 

consequences of dreissenid mussels on a pelagic food web. Ecol. Modell. 85, 129–

144. 

Pavlova, V., 2011. First finding of deepwater profunda morph of quagga mussel 

Dreissena bugensis in the European part of its range. Biol. Invasions 14, 509–514. 

doi:10.1007/s10530-011-0100-1 

Pothoven, S. a., Fahnenstiel, G.L., 2013. Recent change in summer chlorophyll a 

dynamics of southeastern Lake Michigan. J. Great Lakes Res. 39, 287–294. 

doi:10.1016/j.jglr.2013.02.005 

Ray, W.J., Corkum, L.D., 1997. Predation of zebra mussels by round gobies , Neogobius 

melanostomus. Environ. Biol. Fishes 50, 267–273. 

Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. 

Sci. 



www.manaraa.com

81 

 

 

Roe, S.L., MacIsaac, H.J., 1997. Deepwater population structure and reproductive state of 

quagga mussels (<I>Dreissena bugensis</I>) in Lake Erie. Can. J. Fish. Aquat. Sci. 

54, 2428–2433. doi:10.1139/cjfas-54-10-2428 

Rosenberg, R., 1985. Eutrophication - The future marine coastal nuisance? Mar. Pollut. 

Bull. doi:10.1016/0025-326X(85)90505-3 

Saccone, L., Conley, D.J., Sauer, D., 2006. Methodologies for amorphous silica analysis. 

J. Geochemical Explor. 88, 235–238. doi:10.1016/j.gexplo.2005.08.045 

Scavia, D., Fahnenstiel, G.L., 1987. Dynamics of Lake Michigan phyotplankton: 

mechanisms controlling epilimentic communities. J. Great Lakes Res. 13, 103–120. 

Shafer, M.M., Armstrong, D.E., 1994. Mass fluxes and recycling of phosphorus in Lake 

Michigan: The role of major particle phases in regulating the annual cycle, in: 

Environmental Chemistry of Lakes and Reservoirs. pp. 287–322. 

Sprung, M., Rose, U., 1988. Influence of food size and food quantity on the feeding of 

the mussel Dreissena polymorpha. Oecologia 77, 526–532. 

Stainton, M.P., Capel, M.J., Armstrong, F.A.J., 1974. The chemical analysis of fresh 

water. 

Stanczykowska, A., Lewandowski, K., 1993. Effect of filtering activity of Dreissena 

polymorpha (Pall.) on the nutrient budget of the littoral Lake Mikolajskie. 

Hydrobiologia 251, 73–79. 

Stoeckmann, A., 2003. Physiological energetics of Lake Erie dreissenid mussels: a basis 

for the displacement of Dreissena polymorpha by Dreissena bugensis. Can. J. Fish. 

Aquat. Sci. 60, 126–134. 

Stoeckmann, A., Garton, D.W., 1997. A seasonal energy budget for zebra mussels 

(Dreissena polymorpha) in western Lake Erie. Can. J. Fish. Aquat. Sci. 54, 2743–

2751. 

Tande, K.S., Slagstad, D., 1985. Assimilation efficiency in herbivorous aquatic 

organisms- The potential of the ratio method using 14C and biogenic silica as 

markers. Limnol. Oceanogr. doi:10.4319/lo.1985.30.5.1093 

Therriault, T.W., Orlova, M.I., Docker, M.F., Macisaac, H.J., Heath, D.D., 2005. 

Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in eastern 

Europe: high gene flow and multiple introductions. Heredity (Edinb). 95, 16–23. 

doi:10.1038/sj.hdy.6800691 



www.manaraa.com

82 

 

 

Turner, C.B., 2010. Influence of zebra (Dreissena polymorpha) and quagga (Dreissena 

rostriformis) mussel invasions on benthic nutrient and oxygen dynamics. Can. J. 

Fish. Aquat. Sci. 67, 1899–1908. doi:10.1139/F10-107 

Tyner, E., 2013. Nearshore Benthic Oxygen Dynamics in Lake Michigan. University of 

Wisconsin-Milwaukee. 

Vanderploeg, H. a., Johengen, T.H., Liebig, J.R., 2009. Feedback between zebra mussel 

selective feeding and algal composition affects mussel condition: did the regime 

changer pay a price for its success? Freshw. Biol. 54, 47–63. doi:10.1111/j.1365-

2427.2008.02091.x 

Vanderploeg, H. a., Liebig, J.R., Carmichael, W.W., Agy, M. a., Johengen, T.H., 

Fahnenstiel, G.L., Nalepa, T.F., 2001. Zebra mussel (Dreissena polymorpha) 

selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) 

and Lake Erie. Can. J. Fish. Aquat. Sci. 58, 1208–1221. doi:10.1139/cjfas-58-6-

1208 

Vanderploeg, H. a., Liebig, J.R., Nalepa, T.F., Fahnenstiel, G.L., Pothoven, S. a., 2010. 

Dreissena and the disappearance of the spring phytoplankton bloom in Lake 

Michigan. J. Great Lakes Res. 36, 50–59. doi:10.1016/j.jglr.2010.04.005 

Vanderploeg, H. a., Pothoven, S. a., Fahnenstiel, G.L., Cavaletto, J.F., Liebig, J.R., Stow, 

C. a., Nalepa, T.F., Madenjian, C.P., Bunnell, D.B., 2012. Seasonal zooplankton 

dynamics in Lake Michigan: Disentangling impacts of resource limitation, 

ecosystem engineering, and predation during a critical ecosystem transition. J. Great 

Lakes Res. 38, 336–352. doi:10.1016/j.jglr.2012.02.005 

Vanderploeg, H.A., Nalepa, T.F., Jude, D.J., Mills, E.L., Holeck, K.T., Liebig, J.R., 

Grigorovich, I.A., Ojaveer, H., 2002. Dispersal and emerging ecological impacts of 

Ponto-Caspian species in the Laurentian Great Lakes 1. Can. J. Fish. Aquat. Sci. 59, 

1209–1228. doi:10.1139/F02-087 

Watkins, J.M., Dermott, R., Lozano, S.J., Mills, E.L., Rudstam, L.G., Scharold, J. V, 

2007. Evidence for remote effects of dreissenid mussels on the amphipod Diporeia : 

Analysis of Lake Ontario benthic surveys , 1972 – 2003. J. Great Lakes Res. 33, 

642–657. doi:10.3394/0380-1330(2007)33 

Wetzel, R.G., 2001. The phosphorus cycle, in: Limnology: Lake and River Ecosystems. 

Academic Press, San Diego, pp. 239–288. 

Yu, N., Culver, D.A., 1999. Estimating the effective clearance rate and refiltration by 

zebra mussels, Dreissena polymorpha, in a stratified reservoir. Freshw. Biol. 41, 

481–492. 

 



www.manaraa.com

83 

 

 

6. Appendices 

Appendix A: Phosphorus Profiles in Core Incubations with Live Mussels 
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Appendix B: Mussel Phosphorus Excretion and Egestion Experiments 

 SRP Excretion 

µmol mgDW
-1

 d
-1

 

Mussel Size 

mm 

Sampling Date 

 5/1/2013 6/12/2013 7/16/2013 8/21/2013 10/14/2013 

Small 

8-12 

 

 

0.0021 - 0.0008 0.0048 0.0009 

0.0011 0.0034 0.0007 0.0021 0.0003 

0.0003 0.0030 0.0004 0.0015 0.0024 

Medium 

13-17 

0.0010 0.0021 0.0010 0.0015 0.0012 

0.0032 0.0016 0.0012 - 0.0061 

- 0.0017 0.0017 0.0015 0.0028 

Large 

18-22 

 

 

0.0010 0.0011 0.0008 0.0012 0.0014 

0.0010 0.0011 0.0022 0.0012 0.0015 

0.0008 0.0016 0.0010 0.0022 0.0011 

 TDP Excretion 

µmol mgDW
-1

 d
-1

 

  

Mussel Size 

mm 

Sampling Date 

 5/1/2013 6/12/2013 7/16/2013 8/21/2013 10/14/2013 

Small 

8-12 

0.0050 - 0.0002 0.0087 0.0004 

0.0029 0.0029 0.0016 0.0092 -0.0009 

0.0021 0.0034 0.0000 0.0124 -0.0010 

Medium 

13-17 

0.0032 0.0034 0.0009 0.0037 0.0019 

0.0034 0.0033 0.0025 - 0.0110 

- 0.0034 0.0028 0.0050 0.0040 

Large 

18-22 

0.0019 0.0017 0.0012 0.0027 0.0017 

0.0017 0.0015 0.0039 0.0029 0.0018 

0.0022 0.0026 0.0014 0.0037 0.0016 

 PP Egestion 

µmol mgDW
-1

 d
-1

 

Mussel Size 

mm 

Sampling Date 

 

 5/1/2013 6/12/2013 7/16/2013 8/21/2013 10/14/2013 

Small 

8-12 

 

 

0.0022 - 0.0017 0.0012 0.0016 

0.0012 0.0153 0.0031 0.0061 0.0011 

0.0015 0.0269 0.0015 0.0023 0.0017 
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Medium 

13-17 

0.0035 0.0072 0.0041 0.0007 0.0011 

0.0024 0.0078 0.0020 0.0022 0.0009 

0.0027 0.0078 0.0038 0.0025 0.0009 

Large 

18-22 

 

 

0.0021 0.0022 0.0014 0.0008 0.0007 

0.0015 0.0022 0.0016 0.0009 0.0009 

0.0012 0.0063 0.0015 0.0012 0.0008 
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Appendix C: Mussel Phosphorus Excretion and Egestion Syringe Experiment 

Length 

mm 

Replicate Mussel  

mgDW 

 

SRP Excretion 

µmol mgDW
-1

 d
-1

 

TDP Excretion 

µmol mgDW
-1

 d
-1

 

PP Egestion 

µmol mgDW
-1

 d
-1

 

4-6 A 1.085 0.008 0.009 0.047 

B 1.209 0.012 0.018 - 

C 1.41 0.012 0.018 0.03 

8-12 A 10.495 0.003 0.004 0.013 

B 6.874 0.004 0.004 0.017 

C 7.938 0.004 0.006 0.011 

13-17 A 28.183 0.005 0.002 0.007 

B 27.57 0.004 0.002 0.002 

C 16.326 0.003 0.000 0.005 

18-22 A 33.983 0.004 0.004 0.003 

B 34.02 0.004 0.002 0.004 

C 42.921 0.002 0.001 0.002 
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Appendix D: Mussel Effective Clearance Rate and Grazing Rate 

 Effective Clearance Rate Grazing Rate 

L mussel
-1

 d
-1 

L mgDW
-1

 d
-1 

µmol P mgDW
-1

 d
-1

 

6/12/2013 

 

 

Small 

8-12 

2.95 1.96 0.043 

5.47 3.65 0.080 

Medium 

13-17 

5.01 0.96 0.021 

2.61 0.50 0.011 

5.56 1.07 0.023 

Large 

18-22 

5.26 0.37 0.008 

5.48 0.38 0.008 

12.74 0.89 0.019 

10/14/2013 

 

 

Small 

8-12 

1.53 0.61 0.013 

1.22 0.49 0.011 

2.72 1.09 0.024 

Medium 

13-17 

2.09 0.31 0.007 

1.79 0.26 0.006 

2.74 0.40 0.009 

Large 

18-22 

3.20 0.19 0.004 

4.39 0.26 0.006 

4.08 0.24 0.005 
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Appendix E: Mussel Phosphorus Areal Excretion and Egestion Calculations 

  Biomass SRP Excretion TDP Excretion PP Egestion 

Mussel 

Size 

mm 

Mussel  

m-2 

mgDW 

mussel -1 
mgDW  

m-2 

µmolSRP 

mgDW-1  

d-1 

µmolSRP  

m-2  

d-1 

µmolTDP 

mgDW-1  

d-1 

umolTDP 

m-2  

d-1 

µmolPP 

mgDW-1  

d-1 

umolPP  

m-2  

d-1 

<5 3378.40 0.13 434.8 0.011 4.62 0.015 6.48 0.04 16.69 

6 750.84 0.54 403.2 0.011 4.29 0.015 6.01 0.04 15.48 

7 680.13 0.80 546.1 0.011 5.81 0.015 8.14 0.04 20.96 

8 445.74 1.14 507.1 0.0016 0.84 0.003 1.55 0.0019 0.94 

9 403.63 1.55 624.5 0.0016 1.03 0.003 1.90 0.0019 1.16 

10 405.22 2.04 825.4 0.0016 1.36 0.003 2.52 0.0019 1.53 

11 350.39 2.61 915.3 0.0016 1.51 0.003 2.79 0.0019 1.69 

12 425.08 3.28 1393.5 0.0016 2.30 0.003 4.25 0.0019 2.58 

13 454.48 4.04 1836.0 0.0016 3.03 0.003 5.60 0.0019 3.40 

14 504.54 4.90 2473.2 0.0016 4.08 0.003 7.54 0.0019 4.58 

15 479.11 5.87 2811.9 0.0016 4.64 0.003 8.57 0.0019 5.21 

16 398.86 6.95 2770.4 0.0016 4.57 0.003 8.44 0.0019 5.13 

17 325.76 8.14 2650.6 0.0016 4.37 0.003 8.08 0.0019 4.91 

18 205.79 9.45 1943.8 0.0016 3.21 0.003 5.93 0.0019 3.60 

19 147.79 10.88 1607.5 0.0016 2.65 0.003 4.90 0.0019 2.98 

20 129.51 12.44 1610.5 0.0016 2.66 0.003 4.91 0.0019 2.98 

21 96.93 14.12 1369.1 0.0016 2.26 0.003 4.17 0.0019 2.53 

22 71.51 15.95 1140.4 0.0016 1.88 0.003 3.48 0.0019 2.11 

23-25 219.29 20.06 4399.5 0.0016 7.26 0.003 13.41 0.0019 8.14 
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Appendix F: Sediment Trap 

Deployment Collection Trap 

Diameter 

cm 

Trap 

Surface 

Area 

m2 

Days 

Deployed 

Depth 

m 

Trap 

Dry 

Weight 

g 

Sedimentation 

Rate 

mg m-2d-1 

µgP 

mgSed-1 

Areal P 

µgP m-2d-1 
µgC 

mgSed-1 

Areal C 

µgC m-2d-1 

6/19/2013 7/16/2013 9.53 0.01 27 18A 0.10 527.05 - - 248.92 131195.92 

18B 0.10 493.79 1.73 27.52 250.88 123879.14 

18C 0.09 457.92 1.61 23.73 

 

252.53 115641.50 

35A 0.10 541.61 2.11 36.92 230.46 124818.45 

35B 0.07 359.17 1.83 21.18 253.23 90953.16 

35C - - - - - - 

53A 0.06 310.83 1.31 13.17 154.13 47906.34 

53B 0.05 254.17 1.19 9.79 198.28 50396.16 

53C 0.06 317.58 1.23 12.62 168.27 53440.03 

7/16/2013 8/21/2013 36 18A 0.24 931.70 2.35 
70.69 

166.04 154699.27 

18B 0.20 777.72 2.23 
55.83 

296.40 230514.77 

18C 0.19 748.48 2.07 
50.04 

285.24 213495.79 

35A 0.24 948.07 1.75 
53.48 

0.00 - 

35B 0.24 932.09 4.66 
140.16 

335.79 312986.05 

35C 0.20 796.82 1.86 
47.89 

327.38 260861.92 

53A 0.13 521.99 1.11 
18.65 

189.18 98749.17 

53B 0.14 554.73 1.13 
20.14 

338.53 187793.13 

53C 0.13 525.10 0.98 
16.55 

174.69 91730.40 

8/21/2013 10/17/2013 57 18A 0.34 842.78 1.25 - 388.97 327811.99 

18B 0.34 847.21 1.43 
34.05 

365.72 309844.57 

18C 0.33 813.97 1.31 
39.00 

342.81 279035.26 

35A 0.29 725.83 1.78 
34.35 

414.04 300519.53 
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0 

35B 0.31 763.74 2.06 
41.64 

401.83 306892.72 

35C 0.31 753.89 1.82 
50.69 

410.32 309340.47 

53A 0.16 381.63 2.29 
44.30 

402.81 153723.81 

53B 0.17 408.22 2.17 
28.14 

372.68 152135.86 

53C 0.17 412.16 2.02 
28.61 

342.62 141214.61 
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